1,

ORI

—2 s A Dabhand Guide ~R@%

DAVID ATHERTON

MASTER

OPERATING SYSTEM

Including BBC B+ and Master Compact

l'l;IHEH Machine IMentifisr
<OREM by David Awiton

JUREM for BBEC M FMICH
;EHEH 295 PRINTGEFWN: - Master

MASTER OPERATING SYSTEM
A Dabhand Guide

David Atherton

DABS
PRESS

U e e U U L

-
<
_

To Lynda

Master Operating System : A Dabhand Guide

© David Atherton 1987
ISBN 1-870336-01-1

First edition June 1987
Second edition January 1988

Editors: Paul Horrell and Bruce Smith
Cover: Paul Holmes

Acornsoft is a trade mark of Acorn Computers Ltd, Fulbourn Road, Cherry
Hinton, Cambridge England. MacAuthor is published by Icon Technology
Ltd, Leicester England. The Apple Macintosh and Laserwriter are produced
by Apple Computer Inc. Advanced Disc Toolkit is produced by Advanced
Computer Products, 6 Ava House, High Street, Chobham, Surrey.

Within this book the letters BBC refer to the British Broadcasting
Corporation. The terms BBC Micro, Master 128 and Master Compact refer
to the computers manufactured by Acorn Computers Ltd under licence
from the BBC. The terms Econet and Tube are registered trademarks of
Acorn Computers Ltd.

All rights reserved. No part of this book (except brief passages quoted for
critical purposes), or any of the computer programs to which it relates may
be reproduced or translated in any form or by any means mechanical
electronic or otherwise without the prior written consent of the copyright
holder.

Disclaimer : Because neither Dabs Press nor the author have any control
over the way the material in this book and accompanying programs disc is
used, no warranty is given or should be implied as to the suitability of the
advice or programs for any given application. No liability can be accepted
for any consequential loss or damage, however caused, arising as a result of
using the programs or advice in this book or the accompanying programs
disc.

Published by Dabs Press, 76 Gardner Road, Prestwich, Manchester
M25 7HU England.

Typeset in 10 on 11 pt Palatino by Dabs Press using the Acornsoft VIEW
wordprocessor, MacAuthor, and an Apple Macintosh and Laserwriter.
Printed and bound in Great Britain by A. Wheaton and Co Ltd, Exeter,
Devon. A member of the BPCC Group.

O I I o

\

A e e e

___ |
e

Contents

1: Introduction

A History

Type Styles
Acknowledgments
About this book
Thank you...

2 : MOS Commands

The A to Z of * Commands
Safe or not?

3 : The 65C02 Processor

Introduction

Changes from the original 6502
Syntax

65C02 New Instructions

65C02 New Addressing Modes

4 : New MOS Calls

OSBYTE Calls

OSBYTE Calls in Numeric Order
OSWORD Calls

OSWORD Calls in Numeric Order

5 : Shadow and SRAM

Introduction

Shadow Memory

Sideways RAM

Using SRAM for ROMs

Using SRAM for Data Storage
Writing your own ROMs

Low Level Paging

Model B and Electron

Model B+

ool 3

|
|
!

Master Operating System : A Dabhand Guide

Master 128 and Compact
High Order OSWORD &05 and &06

6 : Sideways ROM

7 : The Tube

Sideways ROM Format
ROM Header

Entering a Language ROM
ROM Service Calls
Service Calls

Extended Vectors

Clock ROM

Introduction

Tube Host Code and OS

&400 - Copy Language across the Tube
&403 - Copy Escape Flag across to Tube
&406 - Writing Data across the Tube
Accessing Co-Processor Memory
Claiming and Releasing the Tube
Advising Tube OS of Data Transfer
Notes for programs on 6502 Co-Processor
Summary of Tube Registers

Tube Protocols

8: Filing Systems

OSFIND
OSGBPB/OSBPUT/OSBGET
OSARGS

OSFILE

OSFSC

Prohibited Filename Characters
Using OSWORD &7F
Temporary Filing Systems

The Filing System Handler
Library Filing Systems

Action on Service Calls

Action on Reset

Deselecting Temporary Filing Systems

96

105

105
106
108
108
110
124
125

132

132
133
133
134
134
135
135
136
140
141
143

147

147
147
147
147
149
150
150
151
153
156
157
158
159

O T 3 W

__..5' Contents
% Programming Considerations 159
Filing System Information 160
L 9 : Non-Volatile RAM | 161
> Introduction 161
I CMOS and EEPROM Memory Map 161
OSBYTE Revisited 164
B} CMOS RAM Editor 165
l 10: Differences 172
‘-g BBC BASIC versions 172
BBC B and BBC B+ 177
BBC B and Master 128 178
-_d Master 128 and Master Compact 179
Miscellaneous 180
L Appendices 184
l = A : Complete OSBYTE List 185
B : Complete OSWORD List 191
l = C: Complete VDU List 193
VDU 23 194
e | VDU 25 196
l D : Memory Map 198
EB.4 E: OS Call and Item List 213
I Baud Rates 213
Buffers 213
) Events 214
Filing System Informations 214
System Calls and Vectors 215
F : Key Numbers 217
G :PCB Links 223
—— BBC Model B 223
l BBC Model B+ 225
Master 128 227
-'ﬂl Master Compact 229
E 5

|
¢

Master Operating System : A Dabhand Guide

H : Cartridge Ports

I: Compact Analogue Emulator
J : Connector Pinouts

K : The Programs Disc

L : Guide to Dabhand Guides
Glossary of Terms
Bibliography

Index

230
234
241
245
247
252
259
260

L O O

U et

|
¢

1 : Introduction

A History

When Acorn launched the BBC Microcomputer back in June 1981,

they said that it was a design to last five years—a very optimistic
target for a personal computer then and now for that matter. The fact
that at the time of writing Acorn have been producing and selling
the BBC micro for six-and-a-half years, with no abatement of inter-
est in sight, is a remarkable tribute to the quality of the machine.
Consistently praised over the years has been the excellent Machine
Operating System (MOS) which unlike those on many other systems
is both comprehensive, and easy to use from any language.

Acorn have always guaranteed compatibility across their product
range - if programs use only those operating system routines documen-
ted by them, and do not either directly call routines in the MOS
ROM , other than those documented, or access hardware directly,
then they can be sure that their programs will work on future mac-
hines. Acorn have held good to this promise. Programs written in
1981 and 1982 which assiduously followed the system routine rules,
can still be run on machines such as the Master Compact produced
years later, without any alteration.

Eighteen months after the original BBC Models A and B, the Elec-
tron was launched as a smaller version of the Model B but without
most of its expansion capabilities. Shortly after came the 6502 and
280 second processors. By this time, it was becoming clear that com-
patibility and programming ‘legally’ (ie, using only documented
system routines) were of great importance, if you wanted your pro-
grams to run across the whole range of machines.

The machine base diverged further when the BBC B+ was released
in June 1985. This 64k machine was rapidly followed three months
later by a 128k version in September—the BBC B+128. The B+ was si-
milar to a Model B—in fact it was initially known as the Issue 10
BBC Micro referring to the PCB version, and compatibility problems
were not severe.

Master Operating System : A Dabhand Guide

January 1986 proved to be a significant month with the launch of the
Master Series computers - the 128, the ET (Econet Terminal) and the
various co-processor units. This was followed by the Master Compact
in September 1986 , Acorn’s first bundled system which also set a new
trend by doing away with the standard 5.25” DFS based discs and
progressing onto 3.5” ADFS format discs.

To date then there are five different base machines most of which
can be enhanced or extended with a variety of second and co-
processors, the options open to the programmer are enormously wide
and varied. This book is aimed at the ‘post-Model B’ world. That is
not to say that Model B owners will not benefit from it, but for B+,
Master and Compact users, I hope it will become your standard refer-
ence work. Of course, whatever model you are writing software on, it
only makes sense to try and make your programs run on every type of
machine. This book aims to do just that by providing all the informa-
tion on all aspects of the MOS for the post-B micros under one cover,
something that has not been done before.

Chapters 2, 3, 4, 7 and 8 of the book cover all the Operating System
commands, and also include the new 65C02 opcodes. These are stan-
dard reference sections to add to the documentation for Model B sup-
plied in the original User Guide, and the Advanced User Guide. For
reasons of space, the calls such as OSBYTE and OSWORD which are
identical on all Acorn machines are not documented. Details of these
should, however be found in the User Guide for your machine.

Chapters 5 and 6 take their topics further than pure reference mater-
ial. These are areas where there is a lot of interest, so the text has
been expanded to include examples showing you how to use Shadow
and Sideways RAM, and how to write ROM format software. There
is also a lot of previously unpublished information such as Tube in-
terface documentation, Master Sideways ROM calls, and Compact
technical information. Chapter 9 contains full details of the confi-
guration bytes used in the Master CMOS RAM and EEPROM in the
Master Compact, while Chapter 10 contains a list of all the differ-
ences between the various machines, both in hardware and software.

When writing programs, most people can remember the basic prin-
ciples but can’t commit to memory huge tables of numbers. The Ap-
pendices are extensive as needs be to encompass them and include all
the OSBYTEs, OSWORDs, VDU calls, memory maps, and so on.

U UL L

Introduction

Throughout this book you will see references such as ‘B /B+/E’ or
‘M/C’ or ‘All'. This is to show you upon which machines the items
exist. B is the BBC Model B, B+ the BBC B+. E is the Electron, M the

Master 128, and C, the Master Compact. Any other machines are
specifically identified.

Type Styles

Certain typestyles have been used to denote specific things. When an
actual key is being described, a special face is used, like this:
ESCAPE or SHIFT-BREAK.

Program listings are done in this typeface.
10 PRINT “A Program Listing”

Where you have to type something into the computer, it is always
given in this typeface:

*INFO *
The only other face used is this one for screen output

Acorn NHOS

which is deliberately small to fit 80 columns. Of course there are
particular styles, such as large characters for the section headings,
the use of italics for proper names such as Acorn User and bold text
for the occasional emphasis. One final note, the double-bar charac-
ter which appears either as a broken line or pair of lines on the BBC
screen is a single vertical bar here thus |

Acknowledgements

Thanks to Bruce Smith, colleague and friend, for getting me started
writing for Acorn User which in a roundabout way led to this book,
and to Tony Quinn for publishing my articles. An enormous thank-you
to David Spencer, without whom this book would never have been
finished. David knows more about the BBC Micro than anyone I
know, and picked up all the errors from the first edition. Sue Wall
and David Bell at Acorn have always proved very helpful and de-
serve appreciation. Paul Horrell edited the text, Paul Holmes de-
signed the cover, and Graham Bartram strongly influenced the typo-
graphy. Thanks to all of them. Same for my former colleagues from
the BBC who gave me encouragement whilst I was there, And fin-
ally a big hand for Lynda and Susan.

Master Operating System : A Dabhand Guide

About this book

This book is the second title from Dabs Press, published using the
latest desktop publishing and laser printing techniques. The book
was written on a BBC Master 128 using VIEW, and many programming
tools, particularly the excellent Advanced Disc Toolkit and Advan-
ced Disc Investigator produced by Advanced Computer Products, and
our own Fingerprint. The finished text was transferred using BBC
Soft’s Modem Master to an Apple Macintosh SE, using the Red Ryder
shareware comms software at the other end, and a very expensive
cable! On the Mac, the text was processed by MacAuthor, one of the
few British desktop publishing programs, and output to an Apple La-
serwriter. The laser printed pages were sent to the printer, A Whea-
ton and Co., where they were printed and bound in the normal way.

Thank you ...

... for buying /borrowing/stealing this book, we hope you enjoy it and
that it finds a regular place on your computer’s lid! If you have any
comments or suggestions to make, we’d love to hear from you. Our
address is on page 2, and we're on Telecom Gold on 72:2MAG11596, or
Prestel 942876210. Letters to the author should be sent in the same
way, and although we cannot promise all letters will be personally
answered we’ll try our very best.

Correspondents and mail order purchasers will be automatically ad-
vised of future Dabs product releases, unless they request otherwise.
Personal details held will be provided on request in accordance with
the Data Protection Act.

The Second Edition

It’s an unexpected pleasure to reach the second edition of your first
book! Commerecially, thanks must go to our good friends at Computer
Bookshops and Acorn User Merchandising, but most of all thanks to
you the great British (European and worldwide) public, for your va-
lued support. I am indebted to Sean McGoogan of Prestwick in Scot-
land, Andrew Benham of Southgate in London and the ubiquitous Da-
vid Spencer for finding the errors in the first edition, which have
been corrected here, and also to other readers too numerous to mention
for their valuable suggestions—I have tried to incorporate them all.

David Atherton, Manchester, November 1987

10

L L UL UL L O

__
C

2 : MOS Commands |[if JEH
1
=

This chapter contains a comprehensive list of the star (*) commands
which can be executed directly from the keyboard or placed in pro-
grams. The commands can be used from within any programming lan-
guage on the machine, including a NLE (no-language environment)
such as CLI (command line interpreter) or from within machine code
applications. Commands are executed by setting X to the low byte
and Y to the high byte of an address which containing the command
as an ASCII string terminated by carriage return (&0D). The comand
is executed by a call to OSCLI (&FFF7). No accumulator setting is re-
quired. On non-6502 co-processors the X and Y registers are replaced
by other suitable registers, for example HL on the Z80. Listing 2.1
shows how OSCLI can be used to execute the command *CAT from
within a machine code program.

Listing 2.1.

REM OSCLI in assembler

REM (c) Dave Atherton 1987
REM for B+/M/C

REM MOS : A Dabhand Guide

DIM M% &100

FOR pass=0 TO 2 STEP 2
P%=M%

[OPT pass

100 LDX #string MOD 256
110 LDY #string DIV 256
120 JSR &FFF7

130 RTS

140 .string

150 EQUS “*CAT”

160 EQUB 13

170]NEXT

180 CALL M%

83A88B88BE

For the sake of completeness, all the commands from the Acorn filing
systems and other Acorn firmware are included. The machine list re-
flects this, and only the machines where the command is present as
standard are listed. Where the command is documented in existing
User Guides, the description here concentrates on differences on the

11

Master Operating System : A Dabhand Guide

B+ and Master Series. For the purposes of this list, it is considered
standard to have a disc interface fitted to the BBC Micro and Acorn
Electron (Plus 3). Obviously upgrades can supply the other functions
where they are missing - the Model B+ can be fitted with ADFS, the
Model B can have a 1770 DFs fitted, while third party products
supply the missing filing system commands.

Parameters to these calls should be entered as follows. On MOS 2.00
or earlier, 8-bit numbers must be entered in decimal and 16-bit ad-
dresses in hex. Exceptions to this are documented. On MOS 3.00 on-
wards, 8-bit parameters can also be entered in hex by using a preced-
ing ampersand so that, for example, *FX &9C,&8,227 and *FX
156,8,&E3 are identical. Omitted numeric parameters generally de-
fault to 0 any exceptions are noted. When a MOS command expects an
8-bit parameter, giving a number above 255 or &FF will usually gen-
erate a ‘Bad command’ error. Parameters should be separated by one
or more spaces, although in some circumstances (ie, *FX) a comma
may also be used.

If MOS numeric parameters are not 8-bit, then they are 32 bit and
will be expected in hex without an ampersand, for example:

¥ OAD file FFFF1900

Leading zeros can be omitted as can the top 16 bits (the FFFF part in
the example above) if a single processor is being used, ie, a co- or sec-
ond processor is not fitted or switched on.

String parameters may be entered with or without quotation marks,
but generally, failing to use quotes prevents use of the space charac-
ter. Therefore in DFS, typing:

*TITLE “"Hy Disc"
will work correctly, but
¥TITLE My Disc

will title the disc as My. Quotes themselves are entered by using two
quotes characters, so

*KEYO"LOAD “"PROG"""

will set the key up with LOAD “PROG”. Note that 1” also causes a
literal quote and

*KEYO"LOAD |“"PROG|™"
is identical to the previous command.

12

MOS Commands

All MOS commands can be abbreviated, by typing only a few letters
of the command, followed by a period or full stop. The minimum ab-
breviation needed depends entirely on which configuration of mac-
hine you have. The MOS has first claim on all * commands, then
each of the sideways ROMSs from 15 to 0, then the current filing
system, and finally the library FS. The first ROM to identify the ab-
breviation act upon it. As you can’t guarantee that an abbreviation
will pick up the command you want, you should only use them in dir-
ect mode, and always include the full command in programs.Many
people have come unstuck using *D. for *DISC and *A. for *ACCESS
when these have been picked up by third party ROMs.

The commands themselves take optional parameters in two ways.
Firstly, many commands take a default value if no or incomplete par-
ameters are supplied. This is to make the commands simpler to no-
vice users, eg *VERIFY. Some commands allow the use of wildcards to
specify ambiguous names, the filing system commands in particular
use these. Where a command uses an <afsp>, then * can be entered as
‘any number of characters’ and # can be entered as ‘any character’,
thus *INFO * will provide information on all files in the CSD, (Cur-
rently Selected Directory) whereas *INFO #### will provide infor-
mation on CSD files with names that are exactly four characters in
length. *INFO ####W will list files of exactly five characters,
where the fifth character is W.

Again it is not recommended that you omit parameters in your pro-
grams - if nothing else, inclusion of parameters aids clarity in the
listing. Using wildcards is fine, but many of the commands that use
these, such as *WIPE and *DESTROY are not really suitable for inclu-
sion in a user program anyway.

The A to Z of * Commands

Each of the * commands are discussed briefly on the following pages.
Commands are arranged in alphabetical order.

*| <text> MOS All

This is not really a MOS command. It is more the equivalent of a REM
in BASIC, and is used for comments. Anything following *| up to the
carriage return is totally ignored by the MOS. An example might be
a file to load in a ROM image:

13

Master Operating System : A Dabhand Guide

*DIR $.ROMS

*SIRLUHD utils 6000 W Q

E

*| MNow press CTRL-BREAK

*| to initialise this RON

*|
The last four lines have no effect but are useful in providing a way of
documenting an EXEC file of star commands.

*ADFS ADFS B+/E/M/C
Selects the Advanced Disc FS, and tries to load the root directory.
*ACCESS <afsp> <attr> DFS/ADFS/Net All

Sets the attributes of a file so that it can be read from (R), written to
(W), and deleted, or protected from any or all of these. For Net the
settings applicable to “you’ (a user looking at his own files) and for
‘others’ (a user looking at someone elses files) may be different, eg,

*ACCESS file LUWR/R

would means that the creator could read and write to the file (but not
delete it - L) but others could only read it. DFS allows file locking (L)
only. ADFS allows read /write and lock and a special ‘E’ setting
meaning that the file can only be *RUN. Once the E attribute has
been set, it cannot be erased.

*APPEND <fsp> MOS M/C

This is like *BUILD but instead of creating a new file, the existing
file <fsp> is opened and the text you type is added to the end of this
file. Like the *BUILD command, ESCAPE will terminate entry. If
<fsp> is not present, a ‘Not found’ error results.

*BACK ADFS B+/E/M/C

This ADFS command reselects the last directory you were in, ie, the
CSD before the last change of directory. If you have just selected
ADFS, or select the CSD twice, *BACK has no effect.

*BACKUP <src> <dest> DFS/ADFS B/B+/M/C

Make a sector-for-sector copy of one disc surface onto another. The
number of sectors actually copied is determined by the ‘size” bytes in

14

L O

L

.
4

MOS Commands

disc space map. No account is taken of the actual files on the disc. In
ADFS, this is only implemented from version 2.00 onwards.

*BASIC (<@>) MOS All

This command starts up the BASIC language. Of course all languages
have a similar command (*WORD, *PASCAL etc) but these languages
must use service code 4 to decode their startup command. BASIC does
not need to do this - the MOS will do it automatically. Note that on
BASIC 4 upwards, adding ‘@’ as a parameter to the command will
cause a text block to be read in and tokenised. The address of the
block is determined by the contents of memory locations &00 and&01
on the language processor. The user of the ‘@ call is also responsible
for setting up these bytes.

*BUILD <fsp> MOS or FS All

Create a file on disc. The file <fsp> is opened using OSFIND, and a
line editor, prompted by line numbers is entered. Text is accepted
from the current input stream, including carriage returns, but not
ASCII codes 0-31. ESCAPE terminates text entry, and closes the file.

*BYE ADFS/Net E/M/C

This command closes all open files, and is used when you finish
working on the current filing system. On NFS, the command also re-
moves the user from the list of active users. If the maximum users as
configured by fileserver setup are logged on to the network, this com-
mand is needed to allow another user to log on. On ADF5 Winchester
hard disc based systems, the command ‘parks’ the read/write head
safely away from the hard disc surface. A *BYE command should al-
ways be issued before physically moving the Winchester unit.

*CAT (<drv!dir>) MOS All

Gives a list of the files on the current drive (DFS), or directory
(ADFS/network), or other medium (tape/ROM). There is no standard
form of layout although DFS/ADFS/network and tape/ROM layouts
are very similar. This command abbreviates to *.

*CDIR <dir> ADFS/Net B+/E/M/C

This command is only relevant to the hierarchical filing systems ie,
ADFS and Net. It creates a new directory, which can then be selected

15

Master Operating System : A Dabhand Guide

by *DIR <dir>. The directory is empty (it contains no files) to begin
with, has a title string identical to the directory name, and has a
cycle number of 0. ADFS directories can contain 47 objects (files or sub-
directories). Net directories can contain 244 objects.

*CLOSE MOS or FS B+/E/M/C

This issues a call to OSFIND with A=0, and Y=0. The command closes
all open files (in this filing system—see *SHUT). Before this, it up-

dates to media: any bytes still in buffers and not actually transferred
to disc etc, are transferred, and file lengths are adjusted accordingly.

*CODE (<X>) (<Y>) MOS All

This command, identical to OSBYTE &88, places the two parameters
into the X and Y registers, and jumps to the routine whose address is
contained in USERV (&200/&201 on the I/O processor). Because the
call is always to the I/O processor, the command is a useful way of
starting I/ O machine code programs from the co-processor, especially
on pre-Master Series machines which do not have the *GOIO com-
mand. By default USERV points to a ‘Bad command’ BRK error, so un-
til USERV has been modified, *CODE appears to have this effect.

*COMPACT <params> DFS/ADFS All

This puts all the files on the disc onto contiguous sectors, thus making
all the free space contiguous also. On DFS, the optional parameter is
a single drive number 0-3. All the memory between OSHWM and HI-
MEM is used as a buffer. On ADFS, there are two parameters, SP and
LP, denoting the start memory page and number of memory pages (in
hex) required as a buffer during compaction. On a Master or Compact

*COHPACT OE 72

performs the quickest compaction, reserving 72 pages from &0E00 (ie
to &8000). During *COMPACT on both filing systems the disc is some-
times in an inconsistent state—so never abort a compaction. ADFS
2.00 upwards will accept the command without parameters, supply-
ing a default of OE 72.

*CONFIGURE <params> MOS M/C

This writes to the MOS portion of the CMOS RAM on the Master 128,
or the Compact’s EEPROM. The purpose is a permanent machine sett-

16

{1 4 O O

-

MOS Commands

ing of a system variable, ie, the default screen mode. The first para-
meter is a text description, followed by 0 or more parameters. ie,

*CONFIGURE HMODE 135

will select the Teletext screen in shadow mode, as a default. The
*CONFIGURE system is dealt with in more detail in Chapter 5.

*COPY <params> DFS/ADFS All

This command has a different syntax on DFS and ADFS. On DFS, the
syntax is <src drive> <dest drive> <afsp> which will make a copy
on the destination drive of the file(s) <afsp> currently on the source
drive, for example,

*COPY 0 1 U.Text

copies the file Text in directory V to Drive 1. On ADFS, the first par-
ameter is the source file, and the second is the destination directory.
The command therefore copies files to another directory on the same
disc (*COPY V.Text $.W will duplicate ‘Text’ in directory V as ‘Text’
in directory W) or to another disc (*COPY :0.$.Source :1.$) copies
‘Source’ from Drive 0 to Drive 1, using only the $ directory on each.
Wildcards are accepted in DFS and ADFS

*CREATE <fsp> <len> MOS M/C

This creates a file <fsp> of <len> bytes in the current directory. The
file is created using OSFILE with A=7. Only Master Series machines
offer the *CREATE and the new OSFILE call.

*DELETE <fsp> MOS or FS All

This deletes a filename from the catalogue. The file must not be
locked. The actual file data stays on the disc until the space it occu-
pies is needed by another SAVE activity. However, there is no simple
way of recovering a deleted file, and no warning prompt is given.
NB: In ADFS/Net a directory can’t be deleted unless it is empty.

*DESTROY <afsp> DFS/ADFS All

This is the ‘wildcard’ version of *DELETE. All files which match the
<afsp> are listed and a single Yes/No prompt is issued. Typing Y on
DFS, or YES <RETURN> on ADFS will delete all the files listed. ADFS
performs the function by individually *DELETEing each file, and

MOS—B 17

Master Operating System : A Dabhand Guide

thus takes a long time. Note that under ADFS the command can only
destroy files in the CSD and hierarchically inferior directories.

*DIR (<dir>) DFS/ADFS/Net All
This command will select the directory specified

DFS: Followed by a single character directory name. *DIR $ resets
the root directory. To reset Drive 0 as well *DIR :0.$ is required.
Note that *DIR will retain the CSD, but on DFS 1.20 selects Drive 0.

ADFS: Directory names, like filenames can be up to ten characters.
Also the special character A means ‘up a level’, not ‘back a level’,
and commands like:

*DIR ~.Fred

are not unusual. *DIR $ reselects the root directory. *DIR & and
without a parameter reselects the user’s root directory, which on
ADFS is always $, but on Net may not be - using *DIR & gives Net
compatibility.

Net: Is similar to ADFS, except that *DIR and *DIR & select the
users own directory, which, if he is not a system user, will not be $.
Acorn Econet does not support the ‘A concept at all, although this is
supported by competitive products.

*DISC DFS B/B+/M/C

This command selects the Disc Filing System (DFS). The command it-
self is implemented in the DFS. *DISK is also acceptable.

*DISMOUNT <drv> ADFS E/M/C

This is the opposite of *MOUNT, and deselects use of an ADFS drive.
It should be used prior to *MOUNTing a new drive, although in prac-
tice this is not usually necessary. However, the ADFS map sometimes
demands it, generating a ‘Disc changed’ error when you try to
*MOUNT or *DIR the new drive.

*DRIVE <drv> DFS/ADFS B/B+/M/C

This is a DFS command and is used to select one of the four floppy
disc surfaces (0-3) for read /write accesses. It is implemented in ADFS
2.00 onwards for compatibility and is translated to *DIR :<drv>.$

18

2
1
=

MOS Commands

*DUMP <fsp> (<sta> <ofs>) MOS or FS All

This sends to the current output stream a hex and ASCII dump of the
file <fsp>, without corrupting user memory. The dump has lines of a
relative hex address (4 digits), eight hex bytes (2 digits) and eight
ASCII characters. Characters below 32 or above 126 are shown as
dots.

The start and offset parameters, if used, dump the file starting at
byte <start>, using <offset> to determine the relative address dis-
played. These parameters both default to zero, and are not avail-
able on the Model B and Electron. On the Electron *DUMP is provi-
ded as a disc-based utility.

*ENABLE DFS All

This command does nothing except set a flag in memory. Certain dan-
gerous DFS commands will test this flag (at &FFFF10C8 on DFS 1.20)
and if the previous command was not *ENABLE, these commands
work differently. Every MOS command issues a call to OSFSC with
A=8, and DFS uses this to work out if there were any MOS calls be-
tween *ENABLE and the dangerous command.

*EX <adir> MOS or FS B+/M/C

This will show the same display as *INFO for a whole directory. If
used without parameters, the directory displayed is the CSD. On
ADFS *INFO causes the directory to be reloaded, whereas *EX (on the
CsD) does not. Under CFS/RFS any parameters given are ignored.

*EXEC <fsp> MOS All

This opens the file <fsp> and sends all bytes to the current input
stream, having the effect of ‘typing’ the file. No key expansions are
performed. The MOS will automatically close the file when all
bytes have been read or an ESCAPE condition occurs.

*FADFS MOS B+/E/M/C

As *ADFS, this selects the Advanced Disc Filing System, but does not
try to load a directory. *FADFS is invaluable because (a) without
this command, ADFS formatters could not start as the disc in the
drive could not be mounted, and (b) the disc may not be in Drive A,
which is always assumed by *ADFS.

19

Master Operating System : A Dabhand Guide

*FORM <40180> (<drv>) DFS B+/M

On DFS 2.00 onwards, there is a ROM resident disc formatting com-
mand, on earlier versions it is supplied as a disc based command. The
first parameter is 40 or 80 depending how many tracks you wish to be
formatted, although any number between 0 and 255 is accepted, and
the correct free space is calculated. This is useful if you are duplicat-
ing discs, as it makes *BACKUP quicker if you don’t format or copy
unnecessary tracks. Note that if you specify 40 on an 80 track drive,
you will get a 40 track disc, but at 80 track density—meaning that it
can only be used on an 80-track drive. The second DFS parameter is
the drive number(s). Using *FORM 80 0213 will first format the disc
in Drive 0 (both sides) then the disc in drive 1 (both sides).

*FORMAT <drv> <size> ADFS C

On ADFS 2.00 a formatting command has been introduced. The first
parameter is the drive number. On the Compact this will always be
0 or 1, but could be higher when ADFS 2.00 is used on a Master 128.
The second parameter is S, M or L. S, or small, means a single sided 40
track ADFS format (160k), M, or medium, a single sided 80 track for-
mat (320k), and L means a double sided 80 track format (640k). Stan-
dard Compact discs use the M format, although most users will for-
mat data discs as ‘L’. *FORMAT is available on the Master 128 in
MOS 3.21 onwards. *FORMAT is a disc-based utility on the Electron.

*FREE (<drv>) DFS/ADFS/Net B+/E/M/C

This shows the number of bytes free (in decimal) on this device, and
for DFS/ADFS the number of sectors free (in hex). Additionally for
DFS, the number of filenames free is shown. Conversely, the number
of bytes, sectors, and filenames used is shown - so this command can
also quickly tell you the size of a disc.

*FX (<A>) (<X>) (<Y>) MOS All

This provides keyboard access to those OSBYTE routines which per-
form actions, rather than giving results. ie, to speed up the keyboard
repeat speed, type *FX12,4. On the Master series only, the parame-
ters can optionally be given in hex—see the start of this chapter.

20

] N O T W

(
__|

(et e L L

|
‘

MOS Commands

*GO (<addr>) MOS B/B+/M/C

This command is supplied in the Tube MOS with Models B and B+,
and in the MOS on the Master Series. It simply starts a machine code
routine at <addr>. Only the bottom 16 bits are regarded, so *GO
FFFF2000 would still start code at 2000 on the language processor, if
a second processor is active. No checking is made as to whether the
bytes at <addr> are valid machine code.

The command can also be used to drop into the CLI This is done by
typing no parameter on an I/O machine, or *GO F800 on a 6502 second
processor. A “* is prompted and anything typed is acted on as a"*
command. This provides a useful interface whereby *LOAD and
other memory-altering commands can be issued, when all of the pro-
cessor workspace is required. On a 6502 second processor, entering CLI
provides 61k of user RAM (&0400 to &F800).

*GOIO <addr> MOS M/C

This command performs as *GO, but in a two processor environment,
will always call an address on the 1/O processor.

*HELP (<subject>) MOS All

This command shows useful text about the firmware fitted to the
machine. When typed without a parameter, it will show names and
version numbers of the firmware fitted, plus any words that can be
used as <subject> in the above. The actual text supplied when a par-
ameter is given depends entirely on the firmware. A call (OSBYTE
&8F with X=9) is passed by the MOS to each ROM, when a *HELP
command is issued, and it depends entirely on the ROM what action
is taken. Note that the built-in help on DFS and ADFS will not spool
to a disc file, although they will go to the printer.

*IGNORE (<n>) MOS M/C

When used with a parameter, this is similar to OSBYTE 6, which
sets the character for printer to ignore. However *IGNORE can be iss-
ued without a parameter, resulting in the MOS sending all char-
acters to the printer. It is not possible on Models B and B+ or the Elec-
tron to have no ignore character.

21

Master Operating System : A Dabhand Guide

*INFO <afsp> MOS All

This command will show the name, load address, execution address,
and length of the file or files specified. Also shown is the relative
sector address where the file is stored. All parameters are shown in
hex. The command is implemented as a filing system command on
machines prior to the Master. It is implemented in the MOS on the
Master series, but does not work in the Cassette (CFS) and ROM (RFS)
Filing Systems.

*INSERT <n> MOS M/C

This will reinstate a previously unplugged ROM at the next hard re-
set. See *UNPLUG. The *ROMS command shows which, if any ROMs
are unplugged.

KEY <n> (<string>) MOS All

This will assign <string> to red function key <n>. When the function
keys are pressed (if enabled - see OSBYTE &E1-&E4) it will be as if
<string> had been typed. See also *SHOW

*_<fsname>-LIBFS MOS M/C

This command allows a second library to be available which is not in
the same filing system as that currently in use. The library offered is
the CSD, followed by the Currently Selected Library—CSL (see *LIB
for library order) of the other FS, which must of course be present. An
example would be to supply a network utility library to Disc/ADFS
users. The syntax is *—<fsname>-LIBFS, for example *-NET-LIBFS.
*LIBFS alone cancels this effect, as it effectively says the current FS
is the library FS.

*LCAT ADFS/Net E/M/C

This performs a *CAT on the CSL. The CSD is not changed. On the Net
it is implemented as a library file.

*LEX ADFS/Net E/M/C

This performs a *EX command on the CSL. The CSD is not changed. On
the Net it is implemented as a library file.

22

(.

]

MOS Commands

*LIB (<library>) DFS/ADFS/Net All

This selects a library, the CSL. A library is like a directory for mac-
hine code programs. If a machine code program is *RUN (or */ or
*<filename> is used), the CSD is searched first for the file. If it is
not there, the CSL is searched, followed by any secondary library
(secondary CSD and secondary CSL—see *LIBFS). The system allows
you to have a number of machine code programs online, without clut-
tering up the CSD, and accessible whichever directory you are in.
The system is not really necessary in DFS, which is probably why it
has not been used much! In ADFS and Net however, it can be very use-
ful. EXEC files can also be held in the library because ADFS/Net and
DFS 2.00 onwards will *EXEC any file that you try to *RUN if the ex-
ecution address is &FFFFFFFF.

*LIST <fsp> MOS or FS B/B+/E/M/C

This is similar to *TYPE, except that line numbers are placed at the
beginning of each line. Where *TYPE deviates on Master series mac-
hines, *LIST also deviates.

*LINE (<string>) MOS All

This command places the start address of the string parameter in the
X (lo) and Y (hi) registers, sets A=1 and jumps to the 1/0O processor
address pointed to by USERV (&200/&201). The string is terminated
in memory by a byte containing 13 (&0D). Like *CODE, you will get a
‘Bad command’ error until you modify USERV.

*LOAD <fsp> (<addr>) ANl FS All

This command transfers a file directly into memory. The optional
address is 32 bits in length, and thus loading can be directed into I/O
or language processor. The address is the start point from where the
file will be loaded. If the address is omitted the file will be loaded
to the load address given in the catalogue or header (CFS/RFS). No
checking is done of the validity of the load address. Once loading
commences 64k wraparound takes place if necessary.

*MAP (<drv>) DFS/ADFS B+/E/M/C

This command in DFS 2.00 onwards and ADFS shows the free space(s)
on a disc. Each free area is listed, with start sector and number of sec-

———— e

Master Operating System : A Dabhand Guide

tors free, in hex. A fully compacted disc should only display a single
pair of numbers.

*MOTOR (<n>) MOS B/B+/E/M

This command, identical to OSBYTE &8C, switches the cassette mo-
tor relay. n=0 or no parameter turns the motor off. n=1 to n=255 turns
it on. n>255 causes a ‘Bad command’ error. On the Compact, the com-
mand doesn’t cause an error, and has no effect.

*MOUNT (<drv>) ADFS B+/E/M/C

This transfers the catalogue of an ADFS disc into memory, and selects
directory $. It is inherently performed by the *ADFS command (but
not by the *FADFS command). It should be used each time a new disc
is placed in the ADFS drive. If no parameter is given, the last selec-
ted drive is reMOUNTed

*MOVE <-fs—fsp> <-fs—fsp> MOS M/C

This command will move a single file from one filing system to
another. Typical syntax might be:

*MOUE -ADFS-:1.$.Letters.dack -D0I5C-:0.L.Jackltr

If a full pathname is not given for ADFS/Network, the CSD only is
searched. If a FS name is not given, the current FS is assumed. The file
must exist on the source FS, any destination subdirectories must exist
on the destination FS and both source and destination FS must be se-
lectable with their standard command, which means that their
workspace memory may have to be cleared. (*FX200,3 then BREAK
will usually suffice). Note that *MOVE without the different filing
systems acts as a ‘copy’ or ‘duplicate’ command so that in DFS :

*COPY D 1 FRED
performs the same function as:
*MOUE :0.FRED :1.FRED

Note that unlike *COPY, *MOVE does not take any user memory, in-
stead using the buffers in HAZEL, and if available, shadow screen
memory. Thus *MOVE runs best in non-shadow modes, and worst of
all in Modes 128-130.

The CSD, if expressed, may be abbreviated to @ in common with
other Master Series filing system commands. If in the example

24

(I

L O

(Ut tJtL U U \

__
¢

MOS Commands

above, you were already in ADFS, Drive 1, directory Letters, you
could have typed @.Jack as the first argument.

*OPT (<n>) (<n>) MOS All

Identical to OSBYTE &8B, this sets various filing system options. See
the original User Guide for full details.

*PRINT <fsp> MOS M/C

This command sends the contents of a file direct to the VDU in a simi-
lar manner to *TYPE, except that it actions control codes and top-bit-
set characters rather than showing them in GSREAD format. It is
thus identical to *TYPE on machines prior to the Master 128, except
for this: the old *TYPE dealt with carriage returns through the OSA-
SCI routine, causing double-line spacing if the *TYPEA file contains li-
nefeed characters. *PRINT is directed through OSWRCH, printing
raw ASCII data.This will affect any applications which count char-
acters being put through the VDU drivers, and also the appearance
of text being *TYPEd out by programs ie, it is not sufficient just to
change *TYPE to *PRINT in your programs.

*REMOVE <fsp> MOS M/C

This is identical to *DELETE except that it does not generate an error
when the file to be removed is absent. In MOS 3.21 and 5.10, a safety
device is included. If any text follows the <fsp>, a ‘Bad command’ is
generated. This avoids:

*REN. filel file2
where you meant to type *REN. for *RENAME.

*RENAME <fsp> <new fsp> DFS/ADFS/Net All

This alters the name of a file or directory (which must be unlocked,
but need not have write access). On ADFS the command is also used
to move a file to another directory. This is achieved merely by re-
naming it using the new directory pathname.

*ROM MOS All
This selects the ROM filing system (RFS) as the current FS.

Master Operating System : A Dabhand Guide

*ROMS MOS B+/M/C

This lists the names and binary version numbers of the contents of
each ROM slot, which may be a ROM, EPROM or a ROM image in si-
deways RAM. Slots where the “(C) identifier cannot be found are de-
noted as "?” On MOS 3.21/5.10 and higher, duplicate ROMs are not
shown (the first 256 bytes of data are used to perform comparisons)
and the RAM slots bear the message RAM, not ROM. On the Model
B+, the layout of the command is slightly different - the ASCII ver-
sion no, not the binary is shown

Rom 08 : (L) ADT 1.20 {Model B+ layout)
ROH & ADT 00 unplugged (Master/Compact layout)

A bracketed pair of letters indicates whether the ROM is a language
(L) or a service (S) type ROM.

On the Model B+ layout, an empty socket is omitted, thus a display
may have less than 16 items. On the Master layout all sockets are
shown. Empty or duplicate slots are shown as 'ROM n ?’ followed by
‘unplugged’ where appropriate.

*RUN <fsp> MOS All

This command performs a *LOAD of the file, without a parameter,
ie, it loads the file to the load address in the catalogue/file header,
and then jumps to the file’s execution address (which may be on1/0
or language processor).

*SAVE <params> MOS All

*SAVE transfers a contiguous block of memory to file. The parameters
of the *SAVE command are: <fsp> <start address> <end address |
length> (<optional execution address>) (<optional reload
address>), ie:

*SAUE File2 FFFFOEOO +100 FFFFOED!

would save a block of memory from &E00 to &EFF on the I/O pro-
cessor. The execution address is stored as &EO01 located on the I/O
processor. Note that the end address quoted will always be one
higher than the last byte saved. ie,

*SAVE Block 1000 2000
would save byte &1FFF but not &2000.

26

\

i

——

.

 ———
oo

N
i
i
5

{

{

L U U U U

|
v

U U

___ |
{

MOS Commands

The memory transferred can be defined by start and end addresses, or
by start plus length. The third optional parameter is the execution
address. If not given, this defaults to the start address. The fourth
optional parameter is the reload address. If not given, this too de-
faults to the start address.

*SHADOW (<n>) MOS B+/M/C

This command performs OSBYTE &72, with <n> in the X register.
*SHADOW or *SHADOW 0 cause the shadow screen to be selected for
display and writing by VDU code (not direct access) at the next mode
(VDU 22) change, irrespective of whether or not the mode number
has the top bit set. *SHADOW <1-255> causes main or shadow me-
mory to be selected as appropriate according to the top bit of the
mode number following VDU 22. When a *SHADOW 0 is in force, it is
impossible to select a non-shadow screen mode using VDU 22 follo-
wed by a top-bit-clear number. The default condition is *SHADOW
1, even on a Master 128 or Compact set to start in a shadow mode.

*SHOW (<n>) MOS M/C

This command lists any strings programmed on the function keys. The
Master 128 MOS 3.20 must take a parameter and lists the contents
key <n>. MOS 3.21/5.10 will work without a parameter and list all
the keys contents. The single key display just prints the string in GS-
READ format, enclosed in quotes. The full display gives, for each
key, the text “Key” followed by the number in hex, followed by the
text of the string in the same format.

*SHUT MOS M/C

This command is similar to *CLOSE except that it closes all open
files in all Filing Systems, whereas *CLOSE only closes files in the
current Filing System.

*SPOOL (<fsp>) MOS All

This opens a file (using OSFIND A=&80) and then sends all VDU dri-
ver output to the file specified. The output continues until the file is
closed. Closure is acheived by typing *SPOOL or *SPOOLON without
a parameter, which would then form the last few characters of the
file.

27

Master Operating System : A Dabhand Guide

*SPOOLON (<fsp>) MOS M/C

This opens an existing file (using OSFIND A=&C0) and then works
exactly like *SPOOL. A ‘Bad command’ error (not ‘Not found’) will
occur if the existing file is absent.

*SRDATA <id> MOS B+/M/C

This determines that the RAM bank <id> will be addressed using
the pseudo-addressing system. There is no equivalent system routine
in assembly language. Note that to obtain more than 16k of pseudo-
addressable sideways RAM, the banks defined by SRDATA must be
adjacent. ie:

*SRDATA W
*SRDATA ¢
*SRROM X
*SRRON 2

will only provide 16k of pseudo-addressable sideways RAM, as the
second bank (X) is not defined for pseudo-addressing. See Chapter 5
for more details of these SR commands. In the B+ and Master the SR
commands are coded in the DFS ROM, so if this ROM is UNPLUGged,
the commands will not work.

*SRLOAD <fsp> <addr> (<id>) (Q) MOS B+/M/C

This command transfers a file <fsp> into sideways RAM at <addr>.
If pseudo addressing is in use, then <addr> starts at 0, and the <id>
must be omitted. If absolute addressing is used, the <id> is manda-
tory, and the lowest <addr> usable is &8000. The optional Q para-
meter speeds up loading (by using OSFILE instead of OSBGET) but uses
I/0O main memory as a buffer, from OSHWM onwards. This will cor-
rupt data in memory (unless you are using a co-processor).

On MOS 3.21/5.10 and higher, an additional parameter ‘I’ may be
added after or instead of the ‘Q’. After the load has happened, and
provided it happens successfully, this ‘I’ causes a byte in I/O loca-
tion (&2A1 + n) to be set to the value of the byte at &8006 in the si-
deways bank n, where n is the bank specified in the *SRLOAD com-
mand. This only has any meaning where the file being loaded is a si-
deways ROM image. It has the effect of ‘initialising’ the ROM ima-
ge, making it able to accept service calls and hence commands. It does
not however cause a workspace claim to take place, so it is unsuitable
as a method of initialising ROMs which need to claim workspace.

28

0V

—
\

MOS Commands

*SRREAD <addr> <addr> <addr> (<id>) MOS B+/M/C

This transfers data from sideways RAM to main memory (including
Tube memory). The first parameter is the main memory start address
(32 bits). The second is the end address. Alternatively, the number of
bytes to transfer can be given preceded by a ‘+’. Thus:

*SRRERD FFFF2000 FFFF20FF 8000 W
has the same effect as

*SRRERD FFFF2000+FF 8000 M

NB:The Sideways RAM start address does not need to be in the range
&8000-&BFFF, and if used with, say, lower values, the call can be
used as a straight memory shifter. A bonus here is that Tube transfer
is automatic. Use *SRREAD to transfer data to the Tube, and *SR-
WRITE to transfer from Tube to I/O processor.

*SRROM <id> MOS B+/M/C

This determines that the RAM bank <id> will be addressed using
the absolute addressing system. There is no direct assembler system
equivalent. Note that this command is not necessary if you are load-
ing a ROM image with a command such as:

*SRLOARD Database 8000 H Q

unless the bank (W in this example) has previously been allocated to
the pseudo-system with *SRDATA.

*SRSAVE <fsp> <addr> <addr> (<id>) MOS B+/M/C

This command saves sideways RAM memory contents to disc. The
first parameter is the file to save to, the second and third are start
and end (or +the length) of sideways RAM, in absolute or pseudo
range. The optional <id> parameter determines whether the side-
ways address parameters are absolute or relative. As in *SRLOAD,
the Q parameter causes a faster transfer, but again at the overhead
of corrupting main memory.

*SRWRITE <addr><addr><addr> (<id>) MOS B+/M/C

This transfers data to sideways RAM to main memory (including Tube
memory). The first parameter is the main memory start address (32
bits). As with the other commands, the second parameter is the end
address or + the length. The third parameter is the start of sideways

29

Master Operating System : A Dabhand Guide

RAM, in absolute or pseudo-address terms, and the optional <id>
specifies which RAM bank to write to.

The I option is supported on MOS 3.21/5.10. See *SRLOAD.
*STATUS MOS M/C

This command displays the settings of the various operating system
variables stored in CMOS RAM/EEPROM. On MOS 3.20, the settings
are displayed in the order they appear in the MOS. On MOS 3.21 and
5.10 they are displayed in alphabetical order. However, any addi-
tional items added by sideways ROMs responding to service call &41
(see Chapter 6) are always listed last.

*TAPE (<n>) MOS All

Identical to OSBYTE &8C, this command selects the Tape Filing
System, or more strictly the audio tone filing system. If n=3 the 300
baud system is used. Any other or no value of n selects the 1200 baud
system. Although accepted by the Compact it has no real effect as
the Compact is not fitted with a cassette interface.

*TIME MOS M/C

This is only available on the Master /Compact machines, but note
that the Teletext Filing System, supplied on earlier machines adds a
command of this name to the system. On the Master 128, the call is
routed to OSWORD &OE, with (YX)+0=0, and a 24 character string is
sent to the VDU drivers in the format “Sun,17 Aug 1986.15:49:03”
(without quotes). On the Compact, which has no real time clock, the
action taken is to print the string

Fri,31 Dec 1999.23:59:59

On Econet Compact machines, where a clock and fileserver are pre-
sent, the time and date are read from the fileserver (using OSWORD
&14, function code 16), and supplied to the OSWORD &OE routine.
The fileserver does not supply the day of the week, so the string sup-
plied starts with three spaces, then the comma.

*TITLE <title> DFS/ADFS All

In DFS, this command takes a string of up to 12 characters, which is
placed as a title string on the currently selected disc, deleting any
previous string. Any characters are valid in the string, even *#:.$!”

30

e

-
«

MOS Commands

and so on. On ADFS, a new title up to 19 characters can be given to
each directory. This is done by selecting the directory and issuing a
*TITLE command. The default title for each directory is the same as
the name of the directory.

*TV <n> (<n>) MOS All

This is exactly the same as OSBYTE &90. The first parameter sets
the vertical positioning of the picture, the second parameter, if in-
cluded, turns interlace off (0) or on (1). Note that although any value
can be set on the vertical positioning, the Master Series CONFIGURE
system only stores settings between 252 (-4) and 3.

*TYPE <fsp> All FS All

This command, like *LIST and *PRINT sends a file byte by byte to the
VDU driver. On the Models B and B+ it is implemented within filing
systems, and sends each byte to the VDU drivers, irrespective of the
effect this will have. On the Master Series, the command sends
characters under 32 to the drivers in GSREAD format, that is, the for-
mat used by the MOS command of that name. This means that all non
printable characters (except linefeed and carriage return) are shown
in the form “1” followed by the ASCII character for 64+code. If the
code is above 128, then “|!” is shown followed by the character for
the code minus 128, which may in turn involve another “1”. The GS-
READ format for ASCII 2 is | B. The format for 134 is I!IF.

*UNPLUG MOS M/C

This disables ROM software fitted to the computer, or loaded into a
sideways RAM socket. It does this on hard reset by failing to enter
the ROM type byte in the table at &2A1-&2B0 on the 1/O processor.
If the MOS finds no entry here, it will not offer commands to that
slot, so the ROM never gets a chance to initialise itself. Thus an UN-
PLUG only takes effect at the next hard reset. Certain utility ROMs
which direct commands at a specific ROMs will therefore get round
‘UNPLUGEgIng’. See also *ROMS which reports the unplugged/inser-
ted state.

*UNPLUG and *INSERT also exist on some versions of the 1770 DFS,
and as such are available to Model B/B+ users. Similar commands
are provided on some third-party products.

31

Master Operating System : A Dabhand Guide

*VERIFY (<drv>)... 1770 DFS/ADES B+/M/C

This will verify the formatting of a disc. Each track is tested to
check if the ID and CRC marks are correct for standard DFS or ADFS
format. No attempt is made to check validity of the disc contents.
The number of tracks checked is determined by the ‘size’ bytes in
Track 0, Sector 1. This command is supplied as a disc utility on other
versions of the DFS, ie, those based on the 8271 chip.

*X MOS M/C

This command is used in conjunction with a ‘“Tube splitter’, a small
piece of hardware which can be built to share the Tube between two
external co-processors. Typing *X must be followed by a hard reset,
which will toggle the active co-processor. Without this additional
hardware, the command serves no purpose. It appears in Compact
MOS 5.10 even though there is no Tube.

Safe or not?

Certain * commands by their nature can corrupt the contents of main
memory. The list below details the ‘safe’ and ‘unsafe’ commands,
some ‘unsafe’ commands may be made ‘safe’ by specifying parameters:
see the command descriptions above to check.

Safe Commands: *ACCESS, *APPEND, *BACK, *BUILD, *CAT,

*CDIR, *CLOSE, *CREATE, *DELETE, *DESTROY, *DIR, *DISMOUNT,
*DRIVE, *DUMP, *EX, *FREE, *INFO, *LCAT, *LEX, *LIB, *LIST,
*MAP, *"MOUNT, *OPT, *REMOVE, *RENAME, *SAVE, *SPOOL, *SR-
LOAD, *SRSAVE, *TITLE, *VERIFY.

NB. Commands *SRLOAD and *SRSAVE are only safe if the Q option
is omitted.

Unsafe Commands: *BACKUP, *EXEC, *COMPACT, *COPY,*FORM
*FORMAT, *LOAD,*PRINT,*RUN, *SRLOAD using Q, *SRSAVE using
Q,*TYPE

32

e

3 : The 65C02 Processor

Introduction

The Master 128 and Compact all contain a central processing unit
(CPU) that is more powerful than that of the Model B and B+. This
processor, known as a 'CMOS type’, contains all the instructions of the
standard 6502 and quite a few extra ones. There are several different
CMOS type 6502s. The Master and Compact contain a 655C12, the
external ‘6502 second processor’ contains a R65C02, and the Master
Turbo unit has a R65C102. Although there are many internal
differences in the family, all these chips appear identical to the
programmer. There are however some important areas of difference
from the 6502 CPU. These are:

1. Indexed addressing across a page boundary is now corrected.
Execution of invalid opcodes is now predictable.

Decimal flag operations have been improved.

There has been a cycle time change on memory addressing.

The effect of interrupts during BRK execution has changed.

o v R W N

The safety of invalid read operations has been improved.
7. Some new instructions and addressing modes have been added.

Detailed explanations of the first six items and documentation of the
new instructions and addressing modes are given in this chapter.

Several companies manufacture the CMOS 6502, and the chips from
all but one are very similar in operation. However, Rockwell
Instruments, who prefix their chips with the letter ‘R’ (ie, R65C02)
has included four extra instructions - BBR, BBS, RMB and SMB. These
occupy 32 opcodes as each instruction has a different opcode for bits 0
to 7. These are not ‘chance’ instructions - they are documented on the
Rockwell data sheet. The only place you will normally find a
Rockwell R65C02 chip is on a Master Turbo or 6502 second processor
board, although some enthusiasts have been fitting them to other
BBC Micro boards to replace their 6502. Note that Acorn do not
guarantee to use a Rockwell chip on these units.

MOsS—C 33

Master Operating System : A Dabhand Guide

You should not include the Rockwell extra instructions in your
programs unless you are sure that the target machine will definitely
contain a Rockwell processor. This can only be assumed if you know
all the machines that the software will ever run on. The BBC BASIC
assembler does not support these codes. The other new 65C02 opcodes

should only be used on software intended for the BBC B+, Master 128
and Compact.

Changes from the original 6502

1.

The original 6502 has a well known bug where an indirect jump
which crossed a page boundary cross does not add one to its
internal counter for the new page. If the instruction in question
was JMP (&12FF) and location &12FF contained &12, location
&1300 contained &34 and location &1200 contained &56, you
would expect the processor to jump to &3412 whereas in fact it
would jump to &5612, taking the high byte from &1200, not
&1300. This has been cured on the CMOS range, and the correct
jump in this case would be performed.

Some of the original 6502 CPUs could execute a number of the
extra CMOS opcodes. However the chip testing machines at the
factory did not test for those codes, so no-one could guarantee
whether they would be there on any particular machine, nor
indeed what effect executing the codes might have. Certainly
STZ worked on the majority of 6502s, but DEC A almost never
did. The CMOS CPUs do not have this problem - all opcodes not
allocated are executed as NOPs and take two cycles.

The 6502 leaves its decimal flag in an indeterminate state after
a machine reset, and the N, V and Z flags are invalid in a
decimal operation. The CMOS family clear the decimal flag
after reset (ie, perform a CLD) and use the N, V and Z flags
when the decimal mode is active. Note that the ADC and SBC
opcodes (in all modes) now take one more clock cycle in decimal
mode. This is to deal with this flag updating.

Read /modify /write instructions at an effective address, ie, INC
&400,X take two read and one write cycle on the 65C02 andtake
one read and two write cycles on the 6502. This may improve
speed where the location being modified is an 1/O port. It will
not affect the speed of modification of RAM.

~—

1

__
\

The 65C02 Processor

5 If an interrupt has occurred when a BRK has been fetched but
has yet to be executed, the BRK will be executed on the CMOS
family. On the 6502 it is abandoned.

6 When the 6502 performs a read across a page boundary—for
example LDA (&3FFF),Y with Y=2, an extra read would be
performed on &3FFF+3. This can cause problems if &4002 is not
RAM but a write-only I/O port. On the 65C02, the extra read is
performed at the memory address pointed to by the program
counter, which by definition must be RAM or ROM and not 1/0
map. If the instruction just mentioned was assembled at &9000
in memory, an extra read of &9003 will occur. Note that the
extra read is not seen by the program.

7 There are 12 new instructions and two new addressing modes
which provide 59 new opcodes. The rest of the chapter is
devoted to explaining these in detail.

Syntax

In the description of the new opcodes below the following syntax is
used throughout:

A = Accumulator

X = X Register

Y = Y Register

M = Memory

N = Negative flag
0 = Zero

1 = One

Z = ZeroPage

SP = Stack Pointer
PC = Program Counter

A description such as A=A+1 would infer that the contents of the
accumulator have one added to them. Similarly SP=SP+1,(SP)->X
would read as “the stack pointer is incremented by one and the
contents of the byte pointed to by the stack pointer is copied into the
X register’.

35

Master Operating System : A Dabhand Guide

65C02 New Instructions

The extra R65C02 commands are identified by-the remark ‘Rockwell
only’.

BIT Test bits with accumulator mask (New modes)
Flags set by A AND M

The BIT command has been extended to allow immediate operations
ie, BIT #&AA, where no memory is altered, but the flags are set as a
result of ANDing the argument with the accumulator. Note that the
accumulator is not altered. However the operator is of limited use as ~
only Z is altered, not N and V.

Also BIT can now be used with addressing modes zero page,X and :
absolute,X, in which case N and V are affected. =

Opcodes: 89 FF BIT 3&FF
34 70 BIT &70,%

3¢ 00 70 BIT &7000,X% -
Clock cycles: Immediate/zero page,x 2, Absolute X 3

BBR Branch on Bit Reset

IF ZP(bit N)=0 THEN PC=PC+M Rockwell only

This new command is a conditional branch based on the state of a

single bit of zero page memory. The syntax is BBRn zp bb where n is

the bit (0-7), zp is the memory address in zero page and bb is the

distance of the branch, +127 to -128 as usual. The command is useful

as it can replace masking, accumulator use and flag setting. There is

an associated BBS command. .

The branch is relative to the position of the next instruction. This

means that a branch of -3 would be a loop back to the start of the

original instruction. Normally you don’t have to worry about this, as

the assembler takes care of it, but no BBC Micro assembler supports -
R65C02 instructions, so you will have to hand-code the instruction

should you wish to use it - this can be done by using the EQUB

instruction to assemble the bytes concerned. -

Flags affected : None
Addressing mode: Relative

36

g e e e e

The 65C02 Processor

Opcodes : &0F=BBRO &1F=BBR1 &2F=BBR2 &3F=BBR3
&4F=BBR4 &5F=BBR5 &6F=BBR6 &7F=BBR7

OF 70 FO BBRO,&70 -16 (3 bytes)

Clock cycles : 5(+1 if branch occurs)
(+1 more if branch crosses page boundary)

Example program

LDA port \ Put port value in &70
STA &70
BBR3, &70 switch \ If bit 3=0 jump to ‘switch
BBS Branch on Bit Set
IF ZP (bit N)=1 THEN PC=PC+M Rockwell only

This is similar to BBR above, except that the branch occurs if the
memory bit in question is set, ie, contains 1.

Flags affected : None

Addressing mode: Relative

Opcodes : &8F=BBS0 &9F=BBS1 &AF=BBS2 &BF=BBS3
&CF=BBS4 &DF=BBS5 &EF=BBS6 &FF=BBS7

FF 25 20 BBS7,825 32 (3 bytes)

Clock cycles : 5 (+1 if branch occurs)
(+1 more if branch crosses page boundary)
BRA Branch Always
PC=PC~-M

This command is a member of the Branch set, but will always branch,
irrespective of the state of the flags. It is therefore functionally
equivalent to JMP except that it uses relative addressing, thus being
relocatable and shorter. ‘nn’ is the distance of the branch.

The branch is relative to the position of the next instruction. See
BBR.

Flags affected : None
Addressing mode: Relative
Opcode : &80 &nn

37

Master Operating System : A Dabhand Guide

80 F1 BRA -15 (2 bytes)
Clock cycles : 3

Example program
.wait
JSR OSRDCH \ Get a key press in A
MP #32 \ Is it a space
BEQ spc \ If so go to spc routine
MP #13 \ or is it a RETURN
BEQ cr \ go to c¢r routine
LDA #21 \ clear key presses
IDX #0
JSR OSBYTE
BRA wait \ and loop, unconditionally back

As it uses only OS calls, the whole section of code is relocatable.

DEC A Decrement the Accumulator

A=p-1

This new call, an obvious omission from the 6502, allows the
accumulator to be decremented directly, in the same way that X, Y
and memory can be. It is over twice as fast as zero page memory

decrementing. BBC BASIC IV onwards and Acornsoft MASM assembler
allow the alternative mnemonic DEA.

Flags affected : NZ
Addressing mode: Accumulator

Opcode : &3A
3R DEC 8 (1byte)
Clock cycles 1 2

INC A Increment the Accumulator
A=A+1

This new call is, like DEC A, an obvious omission from the 6502. It
allows the accumulator to be incremented directly, in the same way
as X, Y and memory. BBC BASIC IV onwards and Acornsoft MASM
assembler allow the alternative mnemonic INA.

Flags affected : NZ
Addressing mode: Accumulator
Opcode : &1A

38

B L e

The 65C02 Processor

] INC A (1byte
Clock cycles 12

PHX Push the X Register onto the Stack
X->(SP),SP=SP-1

This places the contents of the X register in the location pointed to by
SP, the machine stack pointer. SP is then decremented by one. X
remains unchanged. The command is useful for storing the value of X
perhaps before calling a subroutine where you know it will be
corrupted. On the 6502 only the A register can be stacked in this way
and consequently other registers had first to be transferred to A.

Flags affected : None

Addressing mode: Implied

Opcode : &DA

DA PHX (1Dbyte)
Clock Cycles : 3
Example program

.start
PHP
PHA \ store all registers
PHX \ for later retrieval
PHY

PHY Push the Y Register onto the Stack

Y->(SP),SP=SP-1

This places the contents of the Y register in location pointed to by SP,
the machine stack pointer, which is then decremented by one. Y
remains unchanged. The command is useful for storing the value of Y
perhaps before calling a subroutine where you know it will be
corrupted.

Flags affected : None
Addressing mode: Implied
Opcode : &5A

SA PHY (1byte)
Clock Cycles : 3

39

Master Operating System : A Dabhand Guide

Example program : see PHX

PLX Pull the X Register from the Stack
SP=SP+1, (SP)->X

This increments SP by one, and then takes the byte pointed to by the
stack pointer (SP) and places it in the X register. The actual stack
memory is not altered. The old contents of X are lost. This command is
useful for restoring registers saved with PHX, but also can be used for
data swapping, see the example program.

Flags affected : N2Z
Addressing mode: Implied

Opcode : &FA
FA PL® (1byte)
Clock Cycles 1 4
Example program : data swapping between X and Y
. swap
PHX \ store X and Y
PHY
PIX \ X into Y
PLY \ and Y into X, without corrupting A

PLY Pull the Y Register from the Stack
SP=SP+1, (SP)~>Y

After incrementing SP by one, this takes the byte pointed to by the
stack pointer (SP) and places it in the Y register. The actual stack
memory is not altered. The old contents of Y are lost. This command is
useful for restoring registers saved with PHY, but also can be used for
data swapping.

Flags affected : N2Z
Addressing mode : Implied
Opcode 1 &7A

7R PLY (1byte)
Clock Cycles 1 4
Example program : see PLX

40

B U e U U L U U

The 65C02 Processor

RMB Reset Memory Bit

0 -> ZP(bit N) Rockwell only

This instruction resets (ie, loads with zero) a single bit of a zero page
memory location without altering any of the other bits in the byte.
This can be very useful, especially in conjunction with BBR and BBS
above, when using zero page memory locations, in effect, as
additional flag registers. It cannot unfortunately be used for 1/0 bit-
toggling as only zero page addressing is allowed, and there isn’t any
1/0 on page zero. There is a complementary instruction SMB (Set
Memory Bit).

Flags affected : None
Addressing Mode: Zero page

Opcode : &07=RMB0 &17=RMB1 &27=RMB2 &37=RMB3
&47=RMB4 &57=RMB5 &67=RMB6 &77=RMB7
17 70 RMB1,&70 (2bytes)
Clock cycles : 5

SMB Set Memory Bit

1 -> ZP (bit N) Rockwell only

This is the opposite instruction to RMB. It will set (ie, load with 1) a
single bit of a zero page memory location, and is useful for the same
reasons as RMB.

Flags affected : None
Addressing Mode: Zero page

Opcode : &87=SMB0 &97=SMB1 &A7=SMB2 &B7=SMB3
&C7=SMB4 &D7=SMB5 &E7=SMB6 &F7=SMB7
C? 43 S1B4,&43 (2bytes)
Clock cycles : 5

STZ Store Zero in Memory
0->M

This allows you to set a byte in memory to zero without altering any
registers. It is very useful, as counters and so on often have to be

4]

Master Operating System : A Dabhand Guide

initialised to zero, but for one reason or another the contents of the
registers need to be preserved. It is equivalent to the 6502 instructions

LDA #0
STA menm

but of course, does not affect the accumulator contents. It is available

in the same addressing modes as STY plus the additional mode,
Absolute, X.

Flags affected : None
Addr. Modes : Zero page , Zero page, X
Absolute , Absolute, X

Opcodes
64 70 STZ &70 (2bytes)
74 70 STZ &70,K¥ (2bytes)

9C 00 OE STZ 2EDD (3bytes)
9E 00 OE STZ &EODD,X (3bytes)*

Clock cycles : zp=3:2zp,X=4:abs=4 : abs,X=5
TRB Test and Reset Bits
(M AND (NOT A)) -> M

This command will reset bits in the memory location specified, using
a mask contained in the accumulator. Only those bits which are set
in the accumulator will be affected in the memory being reset. Unlike
the RMB and SMB instructions this instruction works on non page zero
memory and therefore is very useful for /O bit toggling.

Flags affected : Z=1 if all masked bits already reset
Additionally NV affected on Rockwell CPUs

Addr. Modes : Absolute, zero page

Opcodes : &14 (zero page), &1C (main memory)
14 70 TRB &70 (2bytes)
1C 00 OE TRB &EOO (3 bytes)

Clock cycles : zp=5:abs =6

Example program :

\ Switch on M128 internal Tube
\ only disturb the relevant bit.

LDA #&10 \ Mask for bit 4
TRB acccon \ Reset bit 4 of &FE34
BEQ int \ If 2, already reset

42

¢ e

__
|

The 65C02 Processor
RTS
.int BRK \ Tube already on
EQUB 253 \ so why are you doing 1it?
EQUS “Already on”
EQUB 0
TSB Test and Set Bits

MORA->M

This command is the exact opposite of TRB. It will set bits in the
memory location specified, using an accumulator mask. It is also
useful for I/0 toggling. In both TRB and TSB, the accumulator bits
should be set where action is required. A common mistake is to set
bits in the mask prior to TSB and reset bits prior to TRB.

Flags affected : Z=1 if all masked bits are reset.
Additionally NV affected on Rockwell CPUs

Addr. Modes : Absolute, zero page
Opcodes : &04 (zero page), &0C (main memory)
0¢ 70 TSB &70 (2bytes) ;
0C 00 OF TSB &EO0 (3 bytes) l
Clock cycles : zp=5:abs =6 |

65C02 New Addressing Modes

There are two new addressing modes on the 65C02 family. These are :

Indexed Absolute Indirect
PC <- (M+X)+ (M+X+1) *256

This is a new mode and only contains one instruction, JMP. The
instruction JMP (IND,X) takes the 16-bit value of IND and adds to it
the 8-bit contents of X. This gives a 16-bit result. The contents of this
memory address, plus the next address are the effective address
jumped to. The effect is like a JMP (address) where ‘address’ is
IND+X. What does not happen is the addition of X to the contents of
IND and IND+1. Early editions of the Rockwell R65C02 data sheet
give the instruction as JMP (IND),X which is presumably a
typesetting error, but nevertheless watch out for it in disassemblers.

Flags affected : None
Addressing Mode: Indexed Absolute Indirect
Opcode : &7C &nn &nn

43

Master Operating System : A Dabhand Guide

7C 00 OE JHP (REDOD), % (3 bytes)
Clock cycles 16
Example program:

\ Select from a jump table

\ (only even values of X are meaningful)
IDX #4 \ Select ‘close’
JMP (table, X) \ and jump to it.
.table

EQUW read

EQUW write

EQUW close

EQUW open

Indirect Zero Page (No Index)

This is equivalent to zero page indirect with Y (ie LDA (&70),Y)
where Y is zero. Of course, the X and Y contents are irrelevant to the
operation. It is very annoying to have to clear Y on the 6502 for this
sort of operation, so the new mode is very valuable.

Flags affected : NZ
Addressing Mode: Indirect Zero Page

Opcodes :

12 70 ORA (&70) (2 bytes)

32 70 AND (270) (2 bytes)

52 70 EOR (&70) (2 bytes)

72 70 ADC (&70) (2 bytes)

92 70 STA (&70) (2 bytes)

B2 70 LDA (&70) (2 bytes)

bz 70 CHP (&70) (2 bytes)

Fz2 70 SBC (&70) (2 bytes)
Clock cycles : 5 (+1 for ADC and SBC in decimal mode)
Example program

.prog

IDA #&20 \ This routine will

STA &70 \ return with A containing
LDA #&50 \ the CONTENTS of &5020.
STA &71 \

LDA (&70) \ New CMOS instruction

RTS

44

i e

4 : New MOS Calls &:@P@
W]

OSBYTE calls

Most of the routines in the Operating System are available to the
user through the documented Operating System calls resident in page
&FF of memory. Many of these are available through OSBYTE, a
general purpose entry point located at &FFF4. The action taken on
calling OSBYTE is totally dependent on the values of the registers on
entry. The contents of the Accumulator (A) defines the operation to
be performed, X and Y contain any parameters required.

In this book we have decided not to repeat information that is readi-
ly available elsewhere. So OSBYTE calls which are identical on
Model B are not documented here - you will find them in the Model B
User Guide and Advanced User Guide. However, Appendix A con-
tains a complete list of the calls. OSBYTE calls can be entered
through the command line by using the *FX command. ie:

*F¥ 156,8,227
which is equivalent to:

LDA #1356

LDX =8

LDy #227

JSR &FFF4
For calls in the range &00 to &19 the value of Y on entry is irrele-
vant, is not corrupted, and is never used to return a value.
OSBYTE calls from & A6 to &FF allow the user to read a value, write
a value, or just read or write some bits. This is done by setting X and Y
on entry, following the rule:

NEW VALUE = (OLD VALUE AND Y) EOR X

meaning that to read a value, X=0 and Y=&FF, to write a value,
X=value and Y=0.

All the values used by OSBYTEs &A6-&FF are stored in memory from
OSVARS, any particular value being stored at OSVARS + A register.

45

Master Operating System : A Dabhand Guide

OSVARS itself is determined by OSBYTE & A6 and &A?7. It is &0190 on

all machines to date, For example OSBYTE &C2/&C3 read/set how ~
each colour flashes in colours 8-15. The MOS looks at the variables

to time the flashing, which are &190+&C2 = &252 and &190+&C3 =

&253. You can see the effect like this: -
MODE 4
upu 19,1,15;0; (Watch the effect)
7R252=10:7R253=3 (Now watch that)
?8.252=1:72253=100 (and that)

(This is not the recommended way of altering flash rates!)
All OSBYTE calls can be made from a second processor.

46

B e

New MOS Calls
OSBYTE &00 (0) Give MOS version number All
Entry : X=0 Generate error message containing ‘OS’ and version
number.
X>0 Return value in normal way.
Exit
X=0 0s51.00 Early Model B/Electron
X=1 05120 Model B (UK or US)
X=2 052.00 Model B+
=3 083.20 Master 128
X=4 054.00 Master ET
X=5 MOS 5.00 Master Compact

Also see OSBYTE &81 with X=&00 and Y=&01, and OSBYTE &FO0. Be-
tween these three calls you can work out exactly what machine your
software is running on.

OSBYTE &01 (1) User call (read I/0 location &281) All
OSBYTE &02 (2) Set input stream All
OSBYTE &03 (3) Set output stream All

No change in function on the B+ and Master Series. See Model B
Guides.

OSBYTE &04 (4) Select cursor state All
Entry:
=0 Cursor keys used for editing and COPYing.

X=1 Assigns ASCII codes to (brown) cursor keys. COPY=135,
LEFT=136, RIGHT=137, DOWN=138, UP=139.

X=2 Cursor keys return strings set by *KEY where COPY=11, |
LEFT=12, RIGHT=13, DOWN=14, UP=15. :

X=3 On Compact only, the cursor keys will emulate the joy-

sticks and will supply values to the ADVAL (OSBYTE

&80) routines. The cursor key switch positions

(pressed=1) are logically ORed with any physical joy- ‘[
stick. 1
COPY is ORed with Fire Button 1.)\
LEFT is ORed with Joystick Left.

Master Operating System : A Dabhand Guide

RIGHT is ORed with Joystick Right.
UP is ORed with Joystick Up.
DOWN is ORed with Joystick Down.

Remember that the Compact joystick system is digital. See OSBYTE
&80 for a full explanation.

OSBYTE &05 (5) Select printer type All
OSBYTE &06 (6) Select printer ignore character All
OSBYTE &07 (7) Select RS423 receive rate All
OSBYTE &08 (8) Select RS423 transmit rate All

OSBYTE &09 (9) Set flash rate of first screen colour All
OSBYTE &0A (10) Set flash rate of 2nd screen colour All
OSBYTE &0B (11) Set keyboard auto-repeat delay All
OSBYTE &0C (12) Set keyboard auto-repeat rate All

OSBYTE &0D (13) Disable event All
OSBYTE &O0E (14) Enable event All
OSBYTE &OF (15) Flush input/all buffers All

No change in function on the B+ and Master Series. See Model B
Guides.

OSBYTE &10 (16) Write number of ADC channels All
OSBYTE &11(17) Write next channel to be sampled All

No change in function on the B+ and Master 128. The Master Compact
also offers a full emulation of these calls. However the only useful
activity is to turn off the ‘conversion’ using *FX16,0.

OSBYTE &12 (18) Reset function key definitions All
On all machines this call resets the soft key strings to nulls. Note
that on the Master Series the strings are in a totally different place
in memory (see Appendix D) and are stored in a different way.

OSBYTE &13 (19) Wait for vertical sync pulse All

No change in function on the B+ and Master Series. See Model B
Guides.

48

e

New MOS Calls

OSBYTE &14 (20) Font explosion/definition All

On Model B and B+, this call reserves space so that character ma-
trixes can be defined. Space can be reserved for between 32 (default)
and 224 defined characters. Attempts to define a character without
having first reserved the correct space will result in unwanted al-
terations to other characters. The first 32 characters are stored at
&C00-&CFF, and each further block of 32 is stored from OSHWM up-
wards. OSHWM, as read by OSBYTE &B4 is increased. Remember
however that PAGE in BASIC does not increase automatically, and
must be manually altered. Note that any OSBYTE &14 call has a side
effect of restoring ROM definitions to matrixes in the range &20-
&7E.

Entry Definable range
X=0 &80-&9F (default)
X=1 &80-&BF

X=2 &80-&DF

X=3 &80-&FF

X=4 &20-&3F,&80-&FF
X=5 &20-&5F,&80-&FF
X=6 &20-&FF

Note: It is not normally possible to send matrix 127 through the VDU
drivers as it is a control code (DELETE)

On the Master series, the call serves a different purpose. The Master
series font is permanently exploded, and all characters from &20 to
&FF are redefinable at any time. This call is still implemented and
now merely restores the ROM definitions of the entire character set
(&20-&FF). An OSBYTE &20 call with X=6 will result in an exploded
font and default matrixes on all machines. See also OSBYTE &19.

OSBYTE &15 (21) Flush specific buffer All

No change in function on the B+ and Master Series (Buffer 8 (speech
buffer) is present but unused on the Master). See Model B Guides.

OSBYTE &16 (22) Inc. ROM polling semaphore E/M/C

The call increments a byte in memory known as the ROM polling
flag. When the flag is non-zero, the Operating System issues a call
(OSBYTE &8F, X=&15) to each ROM, 100 times a second, to which
ROMs may respond. This enables you to write background routines

MOS—D 49

Master Operating System : A Dabhand Guide

without having to set up interrupt or event vectoring. The reason the
flag is incremented, rather than toggled, is that several ROMs may
turn the flag on, then off, and only when all ROMs present have turn-
ed the system off will it cease to run. See Chapter 6 for more details
of the service call.

Entry : No parameters
Exit : X=preserved Y=corrupt

OSBYTE &17 (23) Dec. ROM polling semaphore @ M/C

This call decrements the ROM polling flag. Every ROM which issues
OSBYTE &16 to start polling should issue this call when polling is no
longer required. Hard reset sets the polling semaphore to zero.

OSBYTE &18 (24) Select external sound system E

On the Electron, this call is used to select an external sound system, to
which subsequent sound command (OSWORD &07) data is sent. The
system was however, never implemented, but if it were, would take a
parameter in X to select a system. See also OSBYTE &74

This call is not implemented on Model B/B+. It does not do anything
on the Master series where it is reserved for Acorn use.

OSBYTE &19 (25) Restore font definitions M/C

The call defines a group of characters from the font definitions in the
ROM, as opposed to OSBYTE &14 which defines the entire set. OS-
BYTE &19 with X=0 is equivalent to OSBYTE &14.

Entry: Restored characters

X=0 &20-&FF 32-255
X=1 &20-&3F 32-63
X=2 &40-&5F 64-95
X=3 &60-&7F 96-127
X=4 &80-&9F 128-159
X=5 &A0-&BF 160-191
X=6 &C0-&DF 192-223
X=7 &EO0-&FF 224-255
Exit : X=corrupt Y=corrupt

50

gL e e

New MOS Calls

OSBYTE &1A(26) to &31(49) All

Calls to OSBYTE with A set between &1A and &31 cause a ‘Bad com-
mand’ error.

OSBYTE &32 (50) Econet transmit errors NFS

This call, serviced by NFS/ANFS, is used after a data transmission,
to check if the transmission worked correctly. If X=0, the transmis-
sion worked.

Entry : None
Exit : A=corrupt, Y=corrupt, C=corrupt

X b7 O=complete 1=in progress
b6 0=successful 1=failed
b5 Always 0
b04 Error code O=successful

Errors: &40=Line jammed
&41=Some part of four-way handshake lost/corrupt
&42=No scout acknowledgement
&43=No clock
&44=Bad transmit control block (TXCB)

OSBYTE &33 (51) Econet receive errors NFS

This call, serviced by NFS/ANFS, is used to check whether data has
been received. The call would usually be continuously issued until
data was present.

Entry : X=Receive control block (RXCB) number
Exit : A=corrupt, Y=corrupt, C=corrupt
X b7 0=no data rec’d 1=data received
b6-0 corrupt.

The appropriate code to check that a message had been received
would be:

.loop

LDA #&33

LDX rxcb \ Already stored
JSR osbyte

TXA

AND #&80

BEQ loop

51

Master Operating System : A Dabhand Guide

.recvd \ Message received.

OSBYTE &34 (52) Delete Econet RX control block NEFES

This call, serviced by NFS/ANFS, deletes a receive control block
(RXCB). Also, it will enable/disable network receive events (ANFS
only)

Entry : X=RXCBnumber, or
X=100 Disable network receive events
X=150 Enable network receive events

Exit : X=preserved, Y=corrupt, C=corrupt

OSBYTE &35 (53) Sever a remote connection NFS

This call, equivalent to the NFS command *ROFF, severs the remote
connection to another machine. The other machine returns control to
its own keyboard.

Entry : No parameters
Exit : All corrupt

OSBYTE &44 (68) Test for Sideways RAM B+/M/C

The call tests whether sideways RAM (SRAM) is fitted to the mac-
hine. As you might expect it only knows about Acorn Sideways RAM
which means the B+ 128k expansion, and the standard 64k of SRAM
in the Master and Compact. However, it will detect 16k of SRAM
that is permanently write-wired such as Solidisk or the RAM fitted
to ROM boards such as ATPL. The call is used by the BBC B+ to dis-
play its startup message, which is why a standard BBC plus 1770
DFS plus 16k of Sideways RAM will display ‘Acorn OS 80K’ on hard
reset. Listing 4.1, on the next page, illustrates how the call is used .

On the Model B and B+, and the first Master 128 MOS, the code to
service this call is contained within the 1770 DFS. On MOS 3.21 and
all Compacts, the code is contained in the main MOS. Note that
when the call is used with non-Acorn sideways RAM, unusual results
may occur. Generally though, the example program should work cor-
rectly. The MOS tests the RAM by writing to the byte at &8008, using
the &FE30 latch to change ROM bank. It does not use the OSRDRM
routine.

52

New MOS Calls

Entry : A=&44 X Y=irrelevant
Exit . A=&44

X b0 setif Bank 4 of SRAM present and usable
X bl setif Bank 5 of SRAM present and usable
X b2 setif Bank 6 of SRAM present and usable
X b3 setif Bank 7 of SRAM present and usable

Non-Acorn SRAM should return a correct value if it is selected by
writing to &FE30, but will return a value of &0F if it is permanently
write selected ie all write operations above &8000 are to a SRAM
bank. It is however very hardware dependent and no completely cor-
rect result can be predicted.

There is further information on Sideways RAM including programs
in Chapter 5.

Listing 4.1.

REM Demo of OSBYTE &44
REM (c) Dave Atherton 1987
REM for B+128/M/C

REM MOS : A Dabhand Guide

osbyte=&FFF4
oswrch=&FFEE
DIM M% 40
FOR pass=0 TO 3 STEP 3
P%=M%

[OPT pass
LDA #0

STA mem

LDA #&44

JSR osbyte
IDX #4

.loop

C1LC

ROR A

BCC not

INC mem

.not

DEX

BNE loop
LDA mem

270 CIC

290 JSR oswrch
300 RTS

310 .mem

320 EQUB 0

BBABBELBE

DMORNNROND R B H R
QATBWNBEBOWVW®O®IUBdWNEO
Soodocododbodbodooo

53

Master Operating System : A Dabhand Guide

330] :NEXT

340 PRINT”There are “;

350 CALL M%

360 PRINT” banks of SW RaM.”

OSBYTE &45 (69) Sideways RAM allocations B+/M/C

This call is implemented on the BBC B+, Master and Compact. It is
also available on BBC B with 1770 DFS, as it is again implemented in
the DFS ROM.

The call reads the status of any Sideways RAM banks indicating
whether they are being used with pseudo or absolute addressing.
Like OSBYTE &44, the results are bit significant.

Entry : A=&44 X)Y irrelevant
Exit : A=&44

X b0 set if Bank 4 of SRAM using pseudo, clear if not.
X bl setif Bank 5 of SRAM using pseudo, clear if not.
X b2 setif Bank 6 of SRAM using pseudo, clear if not.
X b3 set if Bank 7 of SRAM using pseudo, clear if not.

There is an example program to display size of pseudo area in Chap-
ter 5.

OSBYTE &46 (70) to &5F (97) All
Calls to OSBYTE with A set between &46 and &5F cause a ‘Bad com-
mand’ error.

OSBYTE &60 (96) Terminal commands M

This call is used only by the Terminal software supplied in the
Master 128 Mega-Bit ROM. It has six functions only:

Entry: X=&40 Receive flow control (REC) disabled
X=&41 Receive flow control enabled
X=&62 Transmit flow control (TFC) disabled
X=&63 Transmit flow control enabled
X=&80 Remove INSV and REMV intercepts
X=&81 Setup INSV and REMYV intercepts
OSBYTE &61 (97) to &6A (106) All

Calls to OSBYTE with A set between &61 and &6A cause a ‘Bad com-
mand’ error.

54

New MOS Calls

OSBYTE &6B (107) Select int/ext 1 MHz bus M

On the Master 128 (only) there is an internal 2 MHz bus which is
brought out to the cartridge sockets and an external 1 Mhz bus. Only
one can be active at once, and this call selects between them.

Entry : X=0:Y=0 Select external 1 MHz bus
X=1:Y=0 Select internal 2 Mhz bus

Exit : X=preserved, Y=corrupt

NB : The call does not work with MOS 3.20 due to a bug, and access to
the switch must be made directly. See Chapter 5.

OSBYTE &6C (108) Select screen for direct access M/C

This call is implemented on the Master series only, and concerns se-
lection of one of the two planes of 20k of RAM from &3000 to &8000.
The three OSBYTES &6C, &70 and &71 control direct access, VDU dri-
ver access, and display, all of which may be different on the Master.
For the more limited control of shadow memory on the B+, see Chap-

ter 5.
Entry : X=0 Main memory selected for direct access
X=1 Shadow memory (LYNNE) selected for direct access
Exit : X=preserved, Y=corrupt
OSBYTE &6D (109) Make FS permanent M/C

This call is only implemented on the Master and Compact. If made
while a temporary filing system command is active, that temporary
filing system becomes permanent. A simple example can be seen by
typing :

*D1SC

*-TAPE-CAT

(Press ESCAPE)

*CAT (has come back to disc)

*-TAPE-FX109
*CAT (now looking at tape)

55

e

Master Operating System : A Dabhand Guide

OSBYTE &6E(110) and &6F(111) All

Calls to OSBYTE with A set to &6E or &6F cause a ‘Bad command’ er-
ror on the Model B, B+ and Electron. No error is generated on Master
Series, but all machines they have no effect.

OSBYTE &70 (112) Select screen for VDU access M/C

This is similar to OSBYTE &6C, but controls VDU access. The Master
Series MOS allows direct code (LDAs and STAs) to access the bank of
screen RAM determine by OSBYTE &6C, but this is not necessarily the
same as the bank addressed by MOS VDU code. See Chapter 5 for
more details.

Entry : X=0 Select main or shadow according to current mode
(ie if MODE 128-135 used, select shadow)
X=1 Select main memory (immediately)
X=2 Select shadow memory (immediately)

Exit : X=old setting, Y=corrupt

OSBYTE &71 (113) Select screen for video display M/C

This is similar to OSBYTE &6C, but controls display. When both the
shadow and main RAM areas from &3000 to &8000 are full of picture
data (in the same mode), calling OSBYTE &71 can flick instantly be-
tween the two. See Chapter 5 for more details.

Entry : X=0 Select main or shadow according to current mode
(ie if MODE 128-135 used, select shadow)
X=1 Select main memory (immediately)
X=2 Select shadow memory (immediately)

Exit : X=old setting, Y=corrupt

OSBYTE &72 (114) Select next screen mode B+/M/C

This is not really a shadow selection command as such. It allows pro-
grams to automatically select shadow mode (always) at mode
change even if the mode chosen is 0-7 (rather than 128-135). This of-
fers shadow mode to programs already written and issued, which
contain such commands as MODE 0. The call is exactly equivalent to
*SHADOW, which calls this routine. The setting remains in force un-
til the next hard reset. What is actually selected is the VDU access
and display. Direct writes to shadow or main memory are not affec-
ted. On the B+, this is the only shadow control call.

56

New MOS Calls

Entry : X=0 Always select shadow memory at each mode
change regardless of mode number.
X=1 Select shadow memory at mode change if mode in
range 128-135, else select main memory.

OSBYTE &73 (115) Blank or restore palette E

On the Electron only this call will temporarily set all colours to
black, or restore them. It is useful because NMI routines cause pro-
blems with the screen update circuitry.

Entry : X=0 Restore the palette
X>0 Set all palette colours to black, if in Modes 0, 1 or 2

The call gives a ‘Bad command’ on Model B. On the B+/M/C it has
no effect.

OSBYTE &74 (116) Reset internal sound system E

This call is allocated, for the Electron only, to resetting the internal
sound system. This is in connection with the external sound system
supported by OSBYTE &18, and would take a parameter in X. It
causes a ‘Bad command’ error on the Model B, and has no effect on the
B+/M/C.

OSBYTE &75 (117) Read VDU status byte All

This call reads the VDU status byte (at &DO0 on the I/O processor on
all machines). The VDU status byte is a primary reference, and
although no call exists to write legally to it, a write will cause the
desired effects. For example 2&D0=?&D0 OR 2 will cause the screen
to stop scrolling. Acorn have indicated in the past that because of
failure to provide a write capability to OSBYTE &75, it is extremely
unlikely that the byte would ever be moved from &D0, giving access
to this byte (using OSWORD &05 and &06) a quasi-legal status.

Entry : A=&75:X=irrelevant:Y=irrelevant
Exit : A=&75:X=status byte:Y=corrupt

The status byte has the following meaning. The bits of the status re-
gister are set when the conditions described occur.

b0 Printer enabled by VDU 2
bl Scrolling disabled
b2 Paged scrolling enabled by VDU 14

57

B

Master Operating System : A Dabhand Guide

b3 Text window enabled by VDU 28
b4 Currently using shadow screen (B+/M/C)
b5 Graphics text enabled by VDU 5
b6 Input and output cursors separated
b7 Screen disabled by VDU 21
OSBYTE &76 (118) Update keyboard LEDs All

No change in function on the B+ and Master series. Remember that
the Master 128 has its LEDs in a different keyboard position, and
also that the Electron, while servicing this call only has a CAPS
LOCK LED. On exit Xb7 is set if CTRL is being pressed at the time.

OSBYTE &77 (119) Close all *SPOOL etc. files All
OSBYTE &78 (120) Write keys pressed information All
OSBYTE &79 (121) Keyboard scan All
OSBYTE &7A (122) Keyboard scan from &10 All

No change in function on the B+ and Master series. The Master 128
and Compact have of course more keys. See Appendix F for a com-
plete key number table.

OSBYTE &7B (123) Printer driver going dormant All
OSBYTE &7C (124) Clear ESCAPE condition All
OSBYTE &7D (125) Set ESCAPE condition All
OSBYTE &7E (126) Acknowledge ESCAPE condition All
OSBYTE &7F (127) Check for end of opened file All
OSBYTE &80 (128) Read ADC channel/buffer status All
No change in function on the B+ and Master Series. See Model B
Guides. As with all A-to-D calls, the Electron passes OSBYTE &80
with a positive value to the ROMs as an unknown OSBYTE. The Com-

pact emulates the analogue conversion - see Appendix I for full de-
tails.

OSBYTE &81 (129) Read key All

This call, which is called by INKEY in BASIC has three functions.
The first is to read a key within a time limit, the second to read if a
key is being pressed at that exact moment—including non-character
keys like CTRL and CAPS LOCK, and the third, a special case, will
read the machine type.

58

e

_—
{

New MOS Calls

1. Read key in time limit

Entry : A=&81
X=Time limit (in centiseconds) AND &FF
Y=Time limit (in centiseconds) DIV &100

Exit : If key pressed in time limit (except ESCAPE):
A=&81:X=ASCII value of key pressed:Y=0, C=0

If no key hit by time limit: A=&81:X=&FF:Y=&FF, C=1

If ESCAPE pressed (the key that generates an ESCAPE
event, not necessarily the key marked ESCAPE):

A=&81:X=corrupt, Y=&1B:Carry set
2. Read if specific key is being held down

Entry : A=&S81
X=Internal key number EOR &FF : Y=&FF
(See Appendix F for a list of internal key numbers)

Exit : A=&81:X=&FF.Y=&FF Key is being pressed
A=&81:X=0:Y=0 Key is not being pressed

3. Read machine type
Entry : A=&81:X=0:Y=&FF

Exit : X=machine type:Y=0
Machine types:
A=0 BBC Micro MOS 0.10
A=1 Acorn Electron MOS 1.00
A=&FF BBC Micro MOS 1.00 or MOS 1.20
A=&FE BBC Micro MOS 1.00 or MOS 1.10 USA
A=&FD BBC Master 128 MOS 3.20
A=&FC BBC Micro MOS 1.20 West Germany
A=&FB BBC Micro B+ MOS 2.00
A=&FA Acorn ABC MOS
A=&F5 BBC Master Compact MOS 5.10
A=&F4 Master 128 MOS 3.26
OSBYTE &82 (130) Read higher order address All
OSBYTE &83 (131) Read OSHWM All

No change in function on the B+ and Master Series. See Model B User
Guides.

59

Master Operating System : A Dabhand Guide

OSBYTE &84 (132) Read top of user RAM (HIMEM) All

This call returns in X(lo), Y(hi) the address above the last address
free to the user. If shadow mode is selected for VDU access the addr-
ess returned is &8000. If a second processor is active, the address re-
turned is that of the last piece of machine code to be started with
*RUN or *GO, or a language startup. However—starting BASIC after
*RUNning machine code on a 6502 second processor doesn’t alter the
value.

Listing 4.2.

REM Read HIMEM in non-BASIC environment
REM (c) Dave Atherton 1987

REM for B/B+/E/M/C

REM MOS : A Dabhand Guide

DIM M% &200
osWwrch=&FFEE:osbyte=&FFF4
FOR pass=0 TO 3 STEP3
P%=M%

100 [OPT pass
110 LDA #132

120 JSR osbyte
130 TYA

140 JSR hexout
150 TXA

160 .hexout

170 PHA

180 LSR A

130 LSR A

200 LSR A

210 LSR A

220 JSR hexout2
230 PLA

240 ,hexout2

250 AND #&0OF

260 ORA #&30

270 CMP #ASC”9”+1
280 BCC underl0
230 ADC #6

300 .underlO

310 JMP oswrch
320 INEXT

330 CALL M%

OSBYTE &85 (133) Read HIMEM for a given mode All

No change in function on the B+ and Master Series. See Model B
Guides.

BRIBEBYNE

60

A\l

|

.
¢

New MOS Calls

OSBYTE &86 (134) Read input cursor position All

This call returns the current text cursor position. When cursors are se-
parated during cursor editing (ie, COPYing), this returns the position
of the input cursor, that’s the one you are moving with the cursor
keys, represented by the machine cursor—not a block character. OS-
BYTE &AS is a new call for the Master Series, which returns the out-
put cursor position (the block character). This was not previously
readable.

Entry : No parameters

Exit : X=Horizontal character position
Y=Vertical character position

OSBYTE &87 (135) Read character at cursor position All

This returns the character at the cursor position (as returned by OS-
BYTE &86). Note that on B+ onwards, the screen mode returned in Y
will be in the range 0-7. The shadow screen setting must be checked
separately (by OSBYTE &75 reading bit 4 for the VDU status byte).

Entry : No parameters

Exit : X=ASCII code of character, or
X=0 Code not recognised as a character
OSBYTE &88 (136) Perform *CODE All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &89 (137) Perform *MOTOR All

On all machines except Compact, this switches the cassette relay.
On the Compact the command is accepted, but it has no effect, so any
programs transferred onto Compact ADFS discs, will be able to sur-
vive *TAPE and *MOTOR commands in the software.

Entry : X=0 Motor relay off
X>0 Motor relay on

Exit : Xs=corrupt:Y=corrupt

The CFS calls this routine with Y=0 when writing, and Y=1 when
reading to tape.

61

Master Operating System : A Dabhand Guide

OSBYTE &8A (138) Insert value into buffer All
OSBYTE &S8B (139) Perform *OPT All

No change in function on the B+ and Master Series. See Model B User
Guides.
OSBYTE &8C (140) Perform *TAPE All

On all machines except the Compact, this selects the CFS. On the
Compact, the command is accepted, but has no effect. See also OS-
BYTE &89.

Entry : X=3 Select 300 baud CFS
X<>3 Select 1200 baud CFS

Exit : X=preserved:Y=preserved
OSBYTE &8D (141) Perform *ROM All
OSBYTE &S8E (142) Enter language ROM All

No change in function on the B+ and Master Series. See Model B User
Guides.
OSBYTE &S8F (143) Paged ROM service request All

No change in function on the B+ and Master Series. However, there
are many new service calls available. See Chapter 6 where are the
calls available through this OSBYTE are documented.

OSBYTE &90 (144) Perform *TV All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &91 (145) Get character from buffer All
OSBYTE &92 (146) Read from FRED, 1IMHz bus All
OSBYTE &93 (147) Write to FRED, IMHz bus All
OSBYTE &94 (148) Read from JIM, 1 MHz bus All
OSBYTE &95 (149) Write to JIM, 1 MHz bus All
OSBYTE &96 (150) Read from SHEILA All
OSBYTE &97 (151) Write to SHEILA All

No change in function on the B+ and Master 128. On the Compact, the
calls are implemented, but can only respond if hardware is connected.

62

B e e

New MOS Calls
OSBYTE &98 (152) Examine buffer status All
OSBYTE &99 (153) Insert character into buffer All

OSBYTE &9A (154) Write to video ULA ctrl reg All
OSBYTE &9B (155) Write to video ULA palette reg All
OSBYTE &9C (156) Read/Write ACIA ctrl reg All
OSBYTE &9D (157) “Fast” Tube BPUT All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &9E (158) Read from speech processor B/B+
OSBYTE &9F (159) Write to speech processor B/B+

No change in function on the B+. On the Electron and Master Series,
speech is not implemented or offered.

OSBYTE &A0 (160) Read VDU variable base address All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &A1 (161) Read CMOS RAM/EEPROM M/C

This reads bytes from the 146818 CMOS chip on the Master 128, or
the EEPROM chip on the Compact. Fifty locations are readable on
the Master 128 (X=0 to X=49), and either 128 or 256 on the Compact.
A special call (X=255) for the Compact only determines which if any
type of EEPROM is present. Note that this call will not read the
clock registers of the 146818.

Entry : X=byte to beread (0-49 on Master 128, 0-127/254 on Com-

pact)

X=255 (Compact only) - Is EEPROM a 128 or 256 byte de-

vice?

Exit : Xs=corrupt:Y=contents of RAM/EEPROM location

If X=255 on Compact:
Y=0 No EEPROM present
Y=&7F 128 byte EEPROM present
Y=&FF 256 byte EEPROM present

63

Master Operating System : A Dabhand Guide

OSBYTE &A2 (162) Write CMOS RAM/EEPROM M/C

This writes bytes to CMOS RAM or EEPROM. The address (see OS-
BYTE &ALl for range) is placed in X and the data in Y. Note that this
call will not allow you to change byte 0 on either machine, or bytes
127,128 or 255 on the Compact with large EEPROM. This is for Econet
security reasons. See Appendix K for details of the CMOS RAM/EE-
PROM usage.

Entry : X=address on CMOS RAM/EEPROM
Y=Byte to be written

Exit : X=preserved:Y=corrupt

OSBYTE &A3 (163) Reserved for third parties M/C

This call is reserved by Acorn for allocation to third party software
houses, so therefore it controls a variety of functions.

OSBYTE &A4 (164) Check if data is 6502 code M/C

Entry : Y=highbyte of address of code to be checked
X=low byte of address of code to be checked

The routine checks that the location pointed to by XY+7 contains &00
then “(C)”. If it does, the processor code type byte at XY+6 is
checked. If bit 7 is clear, a BRK occurs with the fatal error (ERR=0)
“This is not a language”. If bit 7 is set but bits 3 to 0 are not 0000 (&0)
or 0010 (&2), the fatal error (ERR=0) “I cannot run this code” occurs.
The routine is used when an attempt is made to start a ROM as a lan-
guage, to test whether (a) it is a language, and (b) if it whether or
not it is 6502 machine code or exclusively written for a certain co-
processor.

A Tube Host program on a non-65C02 co-processors should do the
“code” test on its own code types in bits 3-0 of &8007. These are listed
in Chapter 6.

OSBYTE &AS5 (165) Read output cursor position M/C

This call, new to the Master series, returns the output cursor position,
when cursors are separated for editing. The call is complementary to
OSBYTE &86, which returns the input cursor position. If cursors are
not separated, both calls return the same resuit.

Entry : No parameters

64

U L L L

New MOS Calls

Exit : Xs=horizontal cursor position
Y=vertical cursor position.

OSBYTE & A6 (166) Start address of OS variables (o) All
OSBYTE &A7 (167) Start address of OS variables (hi) All

OSBYTE &A8 (168) ROM pointer table (1o) All
OSBYTE &A9 (169) ROM pointer table (hi) All
OSBYTE &AA (170) ROM info table (lo) All
OSBYTE &AB (171) ROM info table (hi) All
OSBYTE &AC (172) Key translation table (1o) All
OSBYTE &AD (173) Key translation table (hi) All
OSBYTE &AE (174) VDU variables (lo) All
OSBYTE &AF (175) VDU variables (hi) All
OSBYTE &B0 (176) R/W CFS timeout counter All
OSBYTE &B1 (177) R/W input source All
OSBYTE &B2 (178) R/W keyboard semaphore All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &B3 (1799 OSHWM/ROM semaphore All

On Models B/B+/E this call reads and writes the primary OSHWM
ignoring any space claimed by character fonts. On the Master Series,
the font is permanently exploded without loss of user RAM, so OS-
BYTEs &B3 and &B4 will always be the same. Thus, &B3 has been
used for a different purpose - it now returns the value of the ROM se-
maphore set by OSBYTE &16/&17. The call follows the NEW=(OLD
AND Y) EOR X rule.

B/B+/E

Entry : X=0:Y=255 returns hi-byte of OSHWM in X
X=value:Y=0 assigns new OSHWM value

M/C

Entry : X=0:Y=255 returns semaphore value in X
X=value:Y=0 assigns new value directly to semaphore

MOS—E 65

Master Operating System : A Dabhand Guide

OSBYTE &B4 (180) R/W current OSHWM All
OSBYTE &B5 (181) R/W RS423 mode All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &B6 (182) Font explosion/Noignore All

On B/B+/E this was used to determine the size of the font explosion
caused by the last OSBYTE &14, effectively by returning the X para-
meter of that last call. On the Master Series, this information is un-
necessary as the font is permanently completely exploded, so the call
has been used to determine whether there is a printer ignore charac-
ter, (not what the character is - that comes from OSBYTE &F6). On
Models B/B+/E you have no choice, there must be at least one ignore
character.

B/B+/E

Entry : X=0:Y=255 returns explosion state (0-7) in X
X=value:Y=0 writes value, just as OSBYTE &14

M/C

Entry : X=0:Y=255

Exit : X>127 = There is no ignore character
X<128 = There is an ignore character. OSBYTE &F6 will
reveal it.

OSBYTE &B7 (183) CFS/RFS switch All

On all machines prior to Compact, this call returned 0 in X if the last
filing system selected (of the two) was tape (CFS), and 2 if it was
ROM (RFS). Any disc etc selections had no effect. On the Compact
the location starts containing 0, but if ROM is selected, it then returns
2. BREAK resets the value (stored in &247) to 0.

OSBYTE &B8 (184) Read copy of video ULA ctrl reg All
OSBYTE &B9 (185) Read ” ” video ULA palettereg All
OSBYTE &BA (186) R'W ROM active at last BRK All
OSBYTE &BB (187) R/W ROM socket of BASIC All

No change in function on the B+ and Master Series. See Model B User
Guides.

66

L

|
(

New MOS Calls

OSBYTE &BC (188) Read current ADC channel All

On the B/B+/M this returns the channel currently being processed -
the channel least suitable for reading at that moment. On the Com-
pact, a figure is supplied which tallies with the rest of the Compact
ADC emulation. The only difference to note is that the Compact de-
faults to 2-channel ‘conversion’. 4-channel ‘conversion’ can be of
course be set up with OSBYTE &10. See Appendix I. This call should
not be used in write mode - use OSBYTE &11 instead. The call is not
implemented on an Electron.

OSBYTE &BD (189) R/W max ADC channel no. All

This call returns the maximum ADC channel number, as set with OS-
BYTE &10. The Compact emulation totally supports this. See Appen-
dix I. The call is not implemented on an Electron.

OSBYTE &BE (190) R/W ADC conversion type All

On the B+ and Master 128, the call sets returns the conversion resolu-
tion.

To write: X=&00 or &0C (12 bit conversion)
X=&08 (8-bit conversion), and Y=0.

Toread: X=&00 and Y=&FF.

Faster but less accurate is 8-bit conversion—however in
ADVAL you lose the full accuracy anyway. On the Com-
pact the call is used to provide a variety of controls over
the pseudo A-to-D system. Details are provided in Ap-
pendix L. The call is not implemented on an Electron.

67

Master Operating System : A Dabhand Guide

OSBYTE &BF (191) R/W RS423 use flag All
OSBYTE &C0 (192) Read 6850 control flag All
OSBYTE &C1 (193) R/W flash counter All
OSBYTE &C2 (194) R/W mark period count All
OSBYTE &C5 (195) R/W space period count All
OSBYTE &C4 (196) R/W auto-repeat delay All
OSBYTE &C5 (197) R/W auto-repeat period All
OSBYTE &C6 (198) R/W *EXEC file handle All
OSBYTE &C7 (199) R/W *SPOOL file handle All

OSBYTE &C8 (200) R/W ESCAPE,BREAK effect All
OSBYTE &C9 (201) R/W keyboard disable status All
OSBYTE &CA (202) R/W keyboard status byte All
OSBYTE &CB (203) R/W RS423 handshake extent All
OSBYTE &CC (204) R/W RS423 suppression flag All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &CD (205) R/W cassette/RS423 flag All

No change in function on the B+ and Master Series. The Compact has
no cassette interface, so calling this command with &40 (or any other
value) will not alter the fact that R5232 output is sent to any RS232
port present.

OSBYTE &CE (206) R/W OS call intercept status All
OSBYTE &CF (207) R/W OSRDCH intercept status All
OSBYTE &D0 (208) R/W OSWRCH intercept status All

These calls are concerned with Econet interception. They can how-
ever be used for other purposes. No change in function on the B+ and
Master Series. See Model B User Guides.

OSBYTE &D1 (209) R/W speech suppression status All

This call does not exist on the Master Series or Electron, as speech is
not offered as an option.

68

1 U U L L e L e e

-
{

New MOS Calls

OSBYTE &D2 (210) R/W sound suppression status All

OSBYTE &D3 (211) R/W BELL channel All
OSBYTE &D4 (212) R/W BELL env. no/amplitude All
OSBYTE &D5 (213) R/'W BELL frequency All
OSBYTE &D6 (214) R/W BELL duration All
OSBYTE &D?7 (215) R/W startup message etc. All
OSBYTE &D8 (216) R/W length of soft key string All
OSBYTE &D9 (217) R/W paged mode count All
OSBYTE &DA (218) R/W VDU queue length All
OSBYTE &DB (219) R/W TAB character value All

OSBYTE &DC (220) R/W ESCAPE character value All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &DD (221) R/W char &C0 to &CF status All
OSBYTE &DE (222) R/W char &DO0 to &DF status All
OSBYTE &DF (223) R/W char &EQ to &EF status All
OSBYTE &EOQ (224) R/W char &F0 to &FF status All
OSBYTE &E1 (225) R/W function key status All
OSBYTE &E2 (226) R/W SHIFT-function key status All
OSBYTE &E3 (227) R/W CTRL-function key status All
OSBYTE &E4 (228) R/W CTRL-SHIFT-fn key status All
On B/B+/E and Master 128, these commands, which determine how a

character insertion/function keypress shall be interpreted, have at
the moment only three possibilities:

X=0 Ignore the ins/key
X=1 Return soft string no. (ins/key AND &0F)
X=2-255 Return character X + (ins/key AND &0F)

where ins/key equals the ASCII code inserted or the number of the
function key pressed, depending on which call is being used.

On the Master Compact, a new feature is implemented, X=2 no longer
returns a 2 for f0/insert &CO0, 2 for f1/&C1 and so on. Instead, it re-
turns two characters to the current input stream (ie, to OSRDCH), the
first being NUL (&00) and the second being the appropriate key num-
ber/inserted code. For the function keys the key numbers are:

69

Master Operating System : A Dabhand Guide

Normal &80-&8F
Shifted &90-&9F
Control &A0-&AF

SHIFT/CTRL &BO0-&BF

The idea behind this system is that you can use the code key on the
Compact to generate ASCII characters in the range 128-255, yet still
use the function keys, doing this by interpreting say ASCII 134 as a
character, but 0 followed by 134 as function key 6.

OSBYTE &E5 (229) R/W ESCAPE key status All
OSBYTE &E6 (230) R/W ESCAPE effects flags All
OSBYTE &E7 (231) R/W IRQ bit mask - user 6522 All
OSBYTE &E8 (232) R/W IRQ bit mask - 6850 All
OSBYTE &E9 (233) R/W IRQ bit mask - system 6522 All
OSBYTE &EA (234) Read Tube flag All

No change in function on the B+ and Master 128. On the Compact, the
call is supported. Reading will always return X=0 (No Tube). Writ-
ing will have no effect. Acorn do not recommend using OSBYTE &EA in
write mode. In practice *FX234,0,0 followed by a language start-up,
will happily return to the I/0 processor. Pressing BREAK will of -
course reselect the co-processor.

OSBYTE &EB (235) Read speech processor presence All

This call does not exist on the Master Series and Electron as speech is
not an option on these machines. It always returns X=0 (no speech
system present). On the B+, it works normally.

OSBYTE &EC (236) R/W *FX3 status All
OSBYTE &ED (237) R/W *FX4 status All

No change in function on the B+ and Master Series. See Model B User
Guides.

OSBYTE &EE (238) Set base for numeric keypad M/C

This new call sets the codes returned by the pad. Individual codes
cannot be set—instead a base code is used. All ASCII codes generated
are thus calculated from that base code. The displacements for each
key are calculated as the ASCII value of keycap legend minus 48. So
keypad 0 is set to the base code, keypad 1 to the base code+1, keypad

70

i"?
L
L
L
L
=
-
L
L
L
L
-
L
i

.v

New MOS Calls

RETURN to the base code minus 35 (13-48=-35) and so on. The default
setting is 48.

Entry : X=0:Y=255 Read base setting
X=value:Y=0 Write new base

Exit : X=old value:Y=contents of next location

OSBYTE &EF (239) R/W *FX114 status B+/M/C

This call reads the shadow screen state as set by OSBYTE &72. How- |
ever, MOS 1.20, which does not support shadow screens, will return a |
value of X=0 for this call. Usually, you would want to treat a Model :
B as ‘no shadow’, so a machine type call (OSBYTE &00, OSBYTE &81

X=0:Y=&FF) should be issued first, and this call only issued when

you are sure the machine in question is a B+ or Master Series.

Entry : X=0:Y=255
Exit : X=0 Shadow mode is selected or will be at the next

mode change (or this is a Model B with MOS 1.20)
X=1 This is not the case. A *FX114,1 state prevails.

OSBYTE &FO (240) Read UK/US flag M/C

This call returns a number indicating the country for which the MOS
is intended. If you wish, your program may check this call, and if you
find a USA machine, adjust your screen depths accordingly—25 lines
where UK has 32, 22 lines where UK has 25, 20 lines in Mode 7, 200
graphic pixels in the Y axis.

Entry : X=0:Y=255
Exit : X=0 UK MOS, X=1 USA MOS

Y=contents of the next byte
OSBYTE &F1 (241) R/W *FX1 (user) setting All
OSBYTE &F2 (242) Read RAM copy of serial ULA All
OSBYTE &F3 (243) R/W timer switch state All
OSBYTE &F4 (244) R/W soft key consistency flag All
OSBYTE &FS5 (245) R/W *FX5 (printer) setting All
OSBYTE &F6 (246) R/W *FX6 (ignore) setting All

No change in function on the B+ and Master Series. See Model B User
Guides.

71

Master Operating System : A Dabhand Guide

OSBYTE &F7 (247) R/W BREAK intercept code All
OSBYTE &F8 (248) R/W BREAK intercept code All
OSBYTE &F9 (249) R/W BREAK intercept code All

No change in function on the B+ and Master Series. See Model B User
Guides. Note that a BREAK with a memory clear, set with OSBYTE
&C8, used to cause a hang-up if a BREAK intercept was in force.
Master Series machines do not hang-up in this situation.

OSBYTE &FA (250) Read *FX112 status M/C

This reads the current setting of OSBYTE &70, the bank of memory
(shadow or main) to which data is written.

Entry : X=0:Y=255

Exit : X=0 Writing as specified by mode
X=1 Always writing to main memory
X=2 Always writing to shadow memory

It is not possible to use this call to write. Instead use OSBYTE &70.

OSBYTE &FB (251) Read *FX113 status M/C

This reads the current setting of OSBYTE &71, which select whether
main or shadow RAM will be displayed as the visible screen.

Entry : X=0:Y=255

Exit : X=0 Display determined by mode
X=1 Always displaying main memory
X=2 Always displaying shadow memory

It is not possible to use this call to write. Instead use OSBYTE &71.

OSBYTE &FC (252) R/W current language ROM no All
OSBYTE &FD (253) R/W last BREAK type All

No change in function on the B+ and Master Series. See Model B User
Guides.
OSBYTE &FE (254) RAM size /SHIFT key effect All

On the Model B, this call returns the main RAM fitted - 16k for a
Model A (X=&40), and 32k for a Model B (X=&80). This was modifi-
able, and by typing *FX254,64, then CTRL-BREAK—a Model B would

72

-
.
=

p

f

B e e L U L U U U L e\

New MOS Calls

pretend to be a Model A. On the B+ and Electron the call has no ef-
fect, but will return X=0 on an Electron and X=1 on B+.

On the Master Series, the call has a totally different purpose, to en-
able or disable (default) the effect of the SHIFT key on the numeric
pad. If enabled, then when SHIFT or SHIFT LOCK is pressed, the key-
pad keys will return their shifted equivalents. Those legends whose
main keyboard equivalents are already shifted return the unshifted
key from the main keyboard.

Model B/B+/E

Entry : X=0:Y=255 Read RAM size
X=value,Y=0 Write RAM size

Exit . X=0 Electron
X=1 B+
X=&40 Model A
X=&80 Model B

NB : Writing &80 to a Model A causes a crash when MODE 0-3 selec-
ted

Master /Compact

Entry : X=0:Y=255 to read
X=0 enable, X>0 disable:Y=0

Exit : X=0 enabled,X>0 disabled:Y=contents of next location

OSBYTE &FF (255) R/W start up options All

This call reads/writes eight system setup bits. On the Model B/B+
only, the default setting of these bits is determined by eight DIL
switches (ON=0 OFF=1) which can be fitted on the keyboard, thus
giving some small degree of system configuration. If the switch is not
fitted, it acts as though all bits are off, and gives a default of &FF.

With the Master non-volatile system, these switches were no longer
required, and thus the call changes slightly. Note that screen mode

and disc drive settings are now made with *CONFIGURE MODE and
*CONFIGURE FDRIVE, not with this call.

Model B/B+/Electron

b0-2 Screen Mode (000=0 to 111=7)
B3 1=!BOOT on SHIFT-BREAK, not on BREAK
0=!BOOT on BREAK, not on SHIFT-BREAK

73

Master Operating System : A Dabhand Guide

b4-5 Set disc speed (00=fastest, 11=slowest)
b6 Reserved
b7 0=DNFS starts in DFS

1=DNFS starts in NFS
(NB : No keyboard switch equivalent on Electron)

Master 128/Compact
b0-2 No effect
b3 1=!BOOT on SHIFT-BREAK
0=!BOOT on BREAK
(irrespective of *CONFIG BOOT setting)
b4-7 No effect

Notes concerning unchanged calls

1. On the Master Series OSBYTE &09 and &0A are not the
only way of selecting flash rates, for example VDU
23,9,m,0,0,0,0,0,0,0 and VDU 23,10,n,0,0,0,0,0,0,0 are iden-
tical to *FX 9,m and *FX10,n.

2. OSBYTESs &10 and &11 are only emulated by the Compact
as it has no ADC hardware. See Appendix L.

3. OSBYTE &12. The size and place of the function key buff-
er has changed. It is now in private RAM (ANDY) and oc-
cupies 1024 bytes.

4. OSBYTE &15/&0F /&80. There is no speech buffer on
Master Series machines.

5. OSBYTE &77 closes *SPOOLON as well as normal *SPOOL
fileson M/C

6. OSBYTE &78. There are more keys on a Master. See Ap-
pendix F for tables of Master keys.

7. OSBYTE &9E and &9F (Read and Write speech processor)
are offered to Paged ROMs on the Master Series.

74

e e Lt UL

OSWORD calls

OSWORD is the name of a major Operating System entry point at
&FFF1. Like OSBYTE, the function invoked is dependent on the value
of the accumulator. Unlike OSBYTE, only a few accumulator values
are used by the Operating System, so many other firmware programs
use OSWORD as an entry point for their low level routines rather
than OSBYTE for which nearly all possible accumulator values are
already used. Some of this firmware is from Acorn, and others are
third-party products.

OSWORD calls always pass and return their parameters through a
block of memory, which you can define anywhere in the system
(Some calls require the block to be on the I/O processor). The address
of this block of memory is placed in the X (low) and Y (high)
registers before calling OSWORD. The size of this block is dependent
on the function, but should not normally exceed 16 bytes. If more than
16 bytes worth of parameters are required, you should use the
OSWORD block to point to another area of memory. Like all system
calls, OSWORD may enable interrupts during execution.

OSWORD calls with an accumulator value of &EQ (224) or greater
are not passed to the Operating System but to the address in held in
USERV (&200/&201 in the I/O processor). This is a useful way of
passing data across the Tube. Below is a list of all known OSWORD
calls implemented by Acorn and others. As with OSBYTE calls whose
function has not changed since the Model B are, for reasons of space,
listed but not documented.

When using the Tube, the number of bytes transferred in each direc-
tion depends on the OSWORD call number. The first16 OSWORD
calls (&00-&0F) use a parameter block whose size is determined by a
table in the Tube OS. Calls from &10-&7F always use a 16-byte
block. Calls from &80-&FF take the contents of the first byte of the
block as the length of the input parameter block, and the contents of
the second byte of the block as the number of parameters to return.

75

Master Operating System : A Dabhand Guide

OSWORD Calls in Numeric Order

In the list below, the identification 3PROM is used to indicate those
calls supplied by third party firmware.

OSWORD &00 (0) Read an input line to memoryAll

OSWORD &01 (1) Read system clock All
OSWORD &02 (2) Write system clock All
OSWORD &03 (3) Read interval timer All
OSWORD &04 (4) Write interval timer All

These have not changed in function on the B+ and Master Series. See
Model B User Guides.

OSWORD &05 (5) Read byte of I/O memory All
OSWORD &06 (6) Write byte to I/O memory All
These have not changed in function, but additionally on the BBC B+

support access to the shadow screen and 12k sideways RAM through
the use of I/O address &FFFExxxx. See Chapter 5 for more details.

OSWORD &07 (7) Generate a sound All
OSWORD &08 (8) Define an envelope All
OSWORD &09 (9) Read pixel colour All
OSWORD &0A (10) Read a character definition All
OSWORD &0B (11) Read the VDU palette All
OSWORD &0C (12) Write the VDU palette All
OSWORD &0D (13) Read graphics cursor pos All

These have not changed in function on the B+ and Master Series. See
Model B Guides.
OSWORD &0E (14) Read CMOS clock M/C

The CMOS clock may be read in three different ways , the manner
being determined my a value placed in the parameter block.

1. Return time/date
Entry : XY+0=0

76

1

B et et

New MOS Calls

This call returns the time and date as a 24 byte string
(starting at XY+0) in the form “Sun,11 Jan 1987.14:02:55"
(without the quotes) followed by a carriage return.

2. Return time/date as BCD data.
Entry : XY+0=1
Exit ¢ XY+0 Year (00-99)
XY+1 Month (01-12)
XY+2 Date (01-31)
XY+3 Day (01-07) 01=Sun 02=Mon..
XY+4 Hours (00-23)
XY+5 Minutes (00-59)
XY+6 Seconds (00-59)
3. Convert a BCD value to a text string

Entry : XY+0=2

This call expects the data to be set up as returned by call 1 above,
(but from XY+1, not XY+0) and will return the data in the format in
call 0. You would use this call to log certain times, perhaps in a
control application, using the more compact binary format (which is
also more suitable for processing), and then later, to print those
times, the call is used to create strings. Note that there are problems
using this call with some early 6502 second processors, in that only
one parameter is passed across by OSWORD instead of the correct
number.

OSWORD &0F (15) Write CMOS clock M/C

The CMOS clock may be written to in three different ways, the
manner being determined my a value placed in the parameter block.

1. Write time only
Entry : XY+0=8
Exit : XY+1to XY+8 are set to a string representing the current

time in the format “13:53:00” (without the quotes). No
carriage return is needed.

2. Write date only
Entry : XY+0=16

Master Operating System : A Dabhand Guide

Exit : XY+1 to XY+15 are set to a string representing the current
date in the format “Sun,06 Feb 1987” (without the
quotes). No carriage return is needed.

3. Write date and time
Entry : XY+0=24
Exit : XY+01 to XY+15 contains the date string ie “Wed,09 Nov

1988” (without the quotes).

XY+16 contains &2E (ASCII code for a full stop).
XY+17 to XY+24 contains the time string ie “13:10:55”
(without the quotes).

OSWORD &10 (16) Econet transmit NFS/ANEFS

This call is used to transmit data co-operatively, ie, there must be a
receive station also involved (using OSWORD &11). It can also be
used for immediate operations as follows:

XY=&81 Peek a remote station

XY=&82 Poke a remote station

XY=&83 JSR to remote station routine

XY=&84 Cause an event at remote station
XY=&86 Halt program running on remote station
XY=&87 Continue a halted program

XY=&88 Read machine type of remote station

For more details, see the Econet Advanced User Guide.

OSWORD &11 (17) Econet receive NFS/ANES

This call also applies to co-operative data transfers. See OSWORD
&10, and OSBYTE &32 to &34. There are so many variants of this call
that it would be impossible to document them here. For more
information see the Econet Advanced User Guide.

OSWORD &12 (18) Econet read args NFS/ANFS

This call reads an Econet argument block. No parameters are required
on entry. On exit, XY to XY+1 hold the station number. XY+2 onwards
holds an argument block buffer. OSWORD &13 (XY=&09) will find
the number of arguments received. For more information see the
Econet Advanced User Guide.

78

|
¢

Ut e e e

New MOS Calls

OSWORD &13(19) R/W station info NFS/ANFS

This controls various information concerning your own station. The
function is determined by the byte at XY. Relevant data is placed at
XY+1 onwards. There are too many functions to describe in detail
here. See the Econet Advanced User Guide.

OSWORD &14 (20) Talk to fileserver etc. NFS/ANFS

Again, the value of XY determines the function of this call

XY=&00 Communicate with the fileserver (26
functions)

XY=&01 Send text message to another station

XY=&02 Cause a fatal error at a remote machine

OSWORD &28 (40) Graphics processor 3P ROM

OSWORD calls &28 to &31 have been provisionally allocated to the
Millipede Prisma 2 graphics processor.

OSWORD &40 (64) Mouse/Trackerball 3P ROM
OSWORD &41 (65) Mouse/Trackerball 3P ROM

Used by AMS Ltd—Full details of this OSWORD call are supplied
in the appropriate Advanced Memory Systems manual. As the Mar-
coni RB2 trackerball is mutually exclusive with the AMX mouse, the
call may also be used to drive the former. Such code exists, for ex-
ample, in the Master AIV System, provided to run the BBC Domesday
videodiscs. If writing code for a mouse it is also permissible to use the
trackerball reserved space in page &D—see Appendix D.

OSWORD &42 (66) Transfer to/from SRAM B+/M/C

This call is implemented in the 1770 DFS in the BBC B+, and in the
MOS on the Master series. It is the low-level equivalent of *SRREAD
and *SRWRITE. The parameter block is preserved after a call, which
is useful for multiple accesses. The call copies a block of memory from
main RAM to Sideways RAM (write) or vice versa (read).

XY+0 =&00 Read from absolute address
=&40 Read from pseudo address
=&80 Write to absolute address
=&C0 Write to pseudo address

Master Operating System : A Dabhand Guide

XY+1.4 32-bit main memory address

XY+5..6 16-bit number of bytes to transfer

XY+7 ROM id for absolute addressing (use
ROM numbers or &10...&13 for
W...Z)

XY+8..9 16-bit sideways address (absolute or
relative)

OSWORD &43 (67) Load/save to SRAM B+/M/C

This call is also implemented in the 1770 DFS in the BBC B+, and in
the MOS in the Master series. It is the low-level equivalent of *SR-
LOAD and *SRSAVE. The parameter block is preserved after a call -
unless it is overwritten during the transfer. After the call a block of
Sideways RAM will have been written to or read from disc/tape. An
optional buffer can be used which will speed up transfer into Side-
ways RAM.

XY+0 =&00 Read from absolute address
=&40 Read from pseudo address
=&80 Write to absolute address
=&C0 Write to pseudo address
XY+1..2 Address of filename (must beon 1I/0
processor)
XY+3 ROM id for absolute addressing
(Numbers or &10...&13 as above)
XY+4..5 16-bit sideways start address
(absolute or relative)
XY+6..7 16-bit number of bytes to save
(ignored on load)
XY+8..9 16-bit buffer (1/0) start address
XY+10..11 16-bit size of buffer

If XY+10 and XY+11 are zero, a default buffer in HAZEL is used, and
user RAM remains uncorrupted. This is equivalent to not using the ‘Y
option in SRLOAD/*SRSAVE. Note that the buffer used is ROM work-
space, not the ‘safe’ &DD00-&DEFF area. If XY+11 is greater than
&7F then the area from OSHWM to HIMEM is used as a buffer.
Otherwise the buffer used is as defined above,

80

e U U U L U L

__
¢

New MOS Calls

Note that *SRROM and *SRDATA have no assembly language
equivalent. For further information on OSWORD &42 and &43 see
Chapter 5.

OSWORD &44 (68) AMX Mouse support 3P ROM
OSWORD &45(69) Aries B32 Move/swap 3P ROM
OSWORD &46 (70) Allocated to BBC Soft 3P ROM

For further details of these calls contact the appropriate companies.

OSWORD &47 (71) to &5E (94) 3P ROM

OSWORD calls &47 to &5E are available for third-party use. If you
are designing a piece of software for general distribution, and you
require an allocated number, contact The Third Party Co-ordinator,
Acorn Computers Ltd, 645 Newmarket Road, Cambridge CB5 8PD. By
doing this, you can at least hope that your software won’t clash with
that of others.

OSWORD &5F (95) BBC Soft ‘Monitor’ 3P ROM

This third party call will only work if you have Monitor by BBC
Soft. The call is used for reading memory, including sideways
memory, across the Tube.

OSWORD &60 (96) Read MSN and status byte VFS

This call reads the Master Sequence Number (ie the number of times
a disc/directory has been written to) and status byte of the currently
mounted videodisc. The call is implemented in the Videodisc Filing
System, VFS. There are no parameters for entry. On exit, two bytes of
information are placed at XY. The first byte (XY) contains the
Master Sequence Number for the current directory (in BCD)—ie how
many times that directory was written to prior to mastering onto
videodisc. XY+1 contains a status byte, in which each bit has the
following meaning;:

Bit Meaning (when bit is set)
b0 File ‘ensuring’ in progress - IRQ pending
(will never happen)
bl Bad Free Space Map
b2 *OPT 1 setting
b3 Not used
MOS—F 81

Master Operating System : A Dabhand Guide

b4 Not used

b5 LVROM controller present
b6 Tube in use by VFS

b7

Tube present (there are other ways of
reading this)
OSWORD &62(98) Access LVROM controller VFS

This is a command to transfer videodisc sectors directly into memory.
On entry the parameter block must be set up as follows:

XY+0 0
XY+1..4 Start memory address
XY+5 Videodisc controller function code

&00 (0) Test drive ready (XY!11=0)

&01 (1) Seek track 0 (XY!11=0)

&03 (3) Request status (OSWORD &63 is
better)

&08 (8) Read data (compatible with ADFS)

&1B (27) Start/stop the unit (XY!11=0)
XY+9=0 Stop XY+9=1 Start
&C8 (200) Read F-code result from LVDOS
&CA (202) Transmit F-code to LVDOS
(For F-codes see the AIV manual)
XY+6 b5-7 Drive number
b0-4 Sector Number (bits 16-20)

XY+7 Sector Number (bits 8-15)
XY+8 Sector Number (bits 0-7)
XY+9 No of sectors

XY+10 0

XY+11 Length of data in bytes (ignored if XY+9 is non-
zero). This is a 32-bit value.

The drive number in XY+6 is ORed with the current drive, to give the
drive number to be accessed. Thus if Drive 1 is currently *MOUNTed,
it is not possible to access Drive 0, unless it is first *"MOUNTed. On
exit the byte at XY contains 0 if the operation occurred satisfactori-
ly. If it did not, the error codes are:

82

=

c—-

e et L L L L

]
(

New MOS Calls
&00 (0) Controller error - will never happen
&02 (2) Drive door open
&03 (3) Media error, ie disc dirty
&05 (5) Bad SCSI command

OSWORD &63 (99) Read last VFS error info VFS

This call takes no entry parameters and returns information about
the last VFS error that occurred. It should only be used when VFS is
selected as the current filing system, and should be called
immediately after the error happens.

Entry : No parameter setting is required
Exit : XY to XY+2 (b04) contain the sector number where error
occurred.

XY+2 (b5-7) contains the current drive number

XY+3 (b0-6) contains the error number

(see OSWORD &62)

XY+3 (b7) if set, means ignore channel number (XY+4) of
error, as it isn’t valid, use sector number only.

XY+4 Channel number of file where error happened

OSWORD &64 (100) Read current F-code VES

This will place the current F-code command string at XY, which
could then be printed out using BASICs $variable feature. There are
no entry parameters. This only works with VFS selected.

OSWORD &70(112) Read MSN and status byte ADFS

This call is implemented in ADFS and has an identical form to
OSWORD &60. XY contains the number of times the current directory
has been written to, and XY+1 contains:

Bit Meaning (when bit is set)

b0 File ‘ensuring’ in progress

bl Bad Free Space Map

b2 *OPT 1 setting

b3 Not used

b4 Not used

b5 Winchester disc controller present
b6 Tube in use by ADFS

Master Operating System : A Dabhand Guide

b7 Tube present (there are other ways of
reading this)
OSWORD &71 (113) Read free space ADFS

This call is implemented in ADFS. There are no parameters for entry.
On exit XY to XY+3 contain a 32-bit number which is the free space
available on the disc. This is the value used by *FREE (which of
course also converts the number to decimal). Listing 4.3 is an example
of this call.

Listing 4.3

10 REM Read ADFS Free Space

20 REM (c) Dave Atherton 1987

30 REM MOS : A Dabhand Guide

40 :

50 *MOUNT O

60 A%=£71:X%=&80:Y%=0

70 CALL &FFF1l

80 PRINT “There are “;!&80;” bytes free”

OSWORD &72 (114) Read/write sectors ADFS

This is a command to transfer ADFS disc sectors directly to or from
memory. On entry the parameter block must be set up as follows:

XY+0 0
XY+1..4 Start memory address

XY+5 &08 (8) Read Data
&0A (10) Write Data
&O0B (11) Seek Track (undocumented by Acorn)—
Other values ignored.

XY+6 b5-7 Drive number
b0-4 Sector Number (bits 16-20)

XY+7 Sector Number (bits 8-15, ie high byte)
XY+8 Sector Number (bits 0-7, ie low byte)
XY+9 No of sectors (read operations only)
XY+10 Unused

XY+11 Length of data in bytes (write operations only).
This is a 32-bit value.

New MOS Calls

The drive number in XY+6 is ORed with the current drive, in the
same way as explained in OSWORD &62 above. For read operations,
byte XY+10..14 are ignored. For write operations, byte XY+9 is
ignored. On exit the byte at XY contains 0 if the operation took place
without error, if not, the error codes are:

&48 (72) CRC error

&50 (80) Sector not found
&60 (96) Bad command
&61 (97) Bad address
&63 (99) Volume error
&65 (101) Bad drive

NB: This call actually passes a command to a SCSI (Small Computer
Systems Interface), also known as SASI (Shugart Associates Systems
Interface) controller, and if a Winchester drive is fitted, this device
will be present and receive the command directly. For floppy discs,
ADFS contains a SCSI emulation subsystem, which takes SCSI com-
mands (&08 &0A and &0B only) and translates them into commands
to drive the 1770 chip. Theoretically this subsystem could be repla-
ced with another, but in existing releases of ADFS, the subsystem en-
trypoints are not documented.

OSWORD &73 (115) Read last error info ADFS

This call returns information about the last ADFS error that occurred,
and should only be used when ADFS is selected as the current filing
system, and should be called immediately after the error happens.

Entry : No parameter setting is required
Exit . XY to XY+2 (b0+4) contain the sector number where error
occurred.

XY+2 (b5-7) contains the current drive number.

XY+3 (b0-6) contains the error number

(see OSWORD &72)

XY+3 (b7) if set, means ignore byte at XY+4, use sector
number only

XY+4 Channel number of file where error happened

OSWORD &7A (122) Teletext commands 3P ROM

This call controls many functions applicable to Teletext. The call is
serviced by the Acorn TFS (Teletext Filing System, the BBC Soft
Advanced Teletext System, and the proprietary systems produced by

e L L

Master Operating System : A Dabhand Guide

other teletext decoder manufacturers, and will not work if these are
not present. The functions are determined by a code byte in XY. If you
are writing your own software to support the teletext hardware, you
may wish to support this call. See the relevant manuals for details.

OSWORD &7B (123) Modem commands 3P ROM

This call controls many functions applicable to telephone communi-
cations. It is serviced by the Acorn Prestel ROM, and also CommSoft,
by SoftMachinery (authors of the former). If you are writing your
own communications software, then you may wish to support this
call. See the relevant manual for details.

OSWORD &7D (125) Read Master Sequence No. DFS

This call returns the number of times a DFS catalogue has been writ-

ten to since formatting, MOD 100. The number is returned as a binary

quantity, but any display should use hex display routines, as it is in-
ternally stored (Sector 001, byte 4) in binary coded decimal.

No entry conditions. On exit XY+0 contains the number.

OSWORD &7E (126) Read disc size DFS

This command applies to DFS discs only. There are no entry parame-
ters. On exit XY to XY+2 contain the 24-bit number representing the
number of bytes on this drive (&19000 for 40 track discs and &32000
for 80 track discs). Many protection schemes alter these bytes, and
they are not a reliable guide to whether is disc is formatted in 40 or
80 tracks. To do that, a much more reliable guide would be to try and
read track IDs for track 2 using OSWORD &7F and see if it contains
IDs as track 1. If it does you are probably trying to read a 40 track
disc in an 80 track drive and a suitable message can be issued-
however track IDs can also be altered in the quest for uncopyable
software.

This command will still work if DFS is not selected as the current fil-
ing system. This could cause problems if ADFS is selected and there is
an ADFS disc present in the drive.

OSWORD &7F (127) Command to 8271 DFS

This is a multi-purpose command to send commands to the disc con-
troller on the 8271 DFS. The 1770 DFS contains emulation of many of

86

.

e e U Ut L U U

]
G

New MOS Calls

the commands, which it then translates into its own data format.
Therefore under 1770 DFS, all commands must be issued in 8271 for-
mat. See the section on the 1770 controller in Chapter 8 for more de-
tails.

The entry format is:

XY+0 Drive number

(If &FF then use current drive)
XY+1..4 32-bit memory address
XY+5 Number of parameters
XY+6 8271 command

(See table in Chapter 8)
XY+7.XY+n Parameters

After the call, XY+n+1 contains 0 if the operation took place without
error, or an error code:

&08 (8) Clock error

&O0A (10) Late DMA (will never occur on a BBC Micro)
&0C (12) Error in CRC of ID field

&OE (14) Error in CRC of data field

&10 (16) Drive not ready (cannot occur)

&14 (20) Track 0 not found

&16 (22) Write fault (ie disc is write-protected)

&18 (24) Sector not found

&FE(254) Emulation of command not supported (1770)

NB: 1t is possible to use OSWORD &7F when DFS is not the currently
selected filing system, but this isn’t wise as the call uses DFS filing
system workspace, which may be used for other purposes when
another filing system is active.

Listing 4.4 shows how to use OSWORD &7F, in this case to read the
sector IDs of a disc. Command &5B reads the sector IDs from a disc,
which is useful when you need to retrieve data from a a disc. Note
how the error code is tested for, this is the byte following the last
parameter byte. The program prints out the track number on the disc
which should match the physical track number given after ‘Track’,
but may not; the head number, which should always be 0, the logical
sector number, which usually doesn’t match the physical sector num-
ber due to skewing, and finally the sector size. A code is used where

87

Master Operating System : A Dabhand Guide

0=128 bytes, 1=256 bytes etc. This can be expressed by the formula in
‘FNconv'.

Listing 4.4

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

88

REM Read sector IDs (OSWORD &7F example)
REM (c) Dave Atherton 1987

REM for B/B+/E/M/C with DFS

REM MOS: A Dabhand Guide

MODE 7

@%=&A07

DIM b &20,B% 100

osword=&FFF1

PRINT “Sector ID Reader”
INPUT”How many tracks ™ T%

IF T$=0 T%=40

FOR I%=0 TO T%-1

PRINT TAB(14,4);”Track “;I%’
PRINT TAB(5);”Trk”, “Head”, “Sec No”,”Size”’
PROCosword7F (0, B%, 3, &5B,1%,0,10)
FORJ%=0 TO 39 STEP4

FOR K$=J% TO J%+2

PRINT B%?K%;” “;

NEXT

PRINTFNconv {B%?K%)

NEXT

vDU30

NEXT

END

DEF PROCosword7F (drv,buf,pars,cmd,parl, par2,par3)
?b=drv

b!l=buf

b?5=pars

b?6=cmd

b?7=parl

b?8=par2

b?9%=par3

n=b?5+7

X%=b:Y%=b DIV 256:A%=47F

CALL osword

IF b?n=0 THEN ENDPROC
PRINT”Disc error &”;~b?n : END

DEFFNconv (X) =2~ (X+7)

EEEE R

New MOS Calls

OSWORD &80 (128) Misc. IEEE commands IEEEFS

This OSWORD command, implemented in the IEEEFS, provides
access to the various 1EEE controls. For further information, see the
IEEEFS manual supplied with the Acorn IEEE488 interface.

OSWORD &82 (130) R/W params Cambridge Ring
OSWORD &83 (131) Data transmission Cambs. Ring
OSWORD &84 (132) Ring polling Cambs. Ring
OSWORD &90 (144) Service Interface Network
OSWORD &AO0 (160) Isolated word recogniser

These commands are implemented by specialist hardware, and you
are referred to the appropriate product manuals. Note however that
it is not a good idea to use these numbers in your own programs. If you
require an OSWORD call for your own use, contact Acorn.

OSWORD &FE Z80 SP Disc Read 780 Host

This call, serviced by the Z80 Tube OS, is used by the firmware to
read single density (FM) discs in the double density (MFM) CP/M
system.

OSWORD &FF 780 Data Transfer " 780 Host

This call, serviced by the Z80 Tube OS, is used by the firmware to
transfer blocks of data across the tube. See also OSWORDs 5 and 6.

89

5 : Shadow & SRAM

=
&

Introduction

As 8-bit microprocessors, the 6502 family can only directly access 64k
of memory. Yet, this is not enough for many applications and so Acorn
increased the RAM available from 32k on the standard Model B, to
64k on the B+, (upgradeable to 128k) and then to 128k as standard on
the Master and Compact. This extra RAM cannot all appear in the
memory map of the computer at the same time, and so it is ‘paged’,
ie, brought into the map when needed. Essentially there are two
areas of memory where paging occurs—the screen area, known as
shadow memory, and the ROMs area, known as sideways memory or
SRAM.

Shadow Memory

The 32k of RAM on a BBC B Micro and Electron appears to the
processor as a contiguous block addressed from &0000 to &7FFF. The
system takes up about 3k of that for essentials (from the bottom), and
a further amount for the screen (from the top), leaving a block in the
middle, for programs and data.

The BBC B+ 64k of RAM is laid out in way which allows a lot of
software to take advantage of it. There is 32k present as on the
Model B, and a further 20k is provided for the screen, so nothing is
needed from the top of the main 32k. This provides more program
space. The snag is that if an 8k or even a 1k screen mode is used, the
other 12 or 19k is difficult (although not impossible) to use for other
tasks. The BBC B+ can be expanded to 128k but the additional 64k is
Sideways RAM, not additional program memory.

The Master 128 and Compact also has Shadow RAM which is
implemented in a similar way to the BBC B+. The important
difference is that Master and Compact Shadow screens can be written
to whilst they are not displayed, as the controls to determine which
bank to read from or write to and which bank to display are
separate.

90

0 e

Shadow & SRAM

Shadow memory is clearly defined by Acorn as having one purpose—
to be used as screen memory so that more of the main RAM can be used
as program memory. As a programmer you don’t have to worry about
this—the MOS takes care of it all for you. There are no high-level
calls provided to do anything unusual but should you wish to use
shadow memory in a different way, it is perfectly possible. Say for
example you are writing a Mode 7 only program such as a teletext
editor, which will always run on a Master. Then clearly shadow
memory from &3000 to &7BFF will be wasted unless you make some
special use of it. Listing 5.1 is an example. This program will save 19
MODE 135 screens to shadow RAM, and then restore them, without
affecting the contents of main RAM.

On the BBC B+ there is an additional 12k of RAM mapped between
&8000 and &AFFF. This is not used by the MOS, and can be used as a
data area. See below for details of how to access this memory.

Sideways RAM

In addition to the 64k of RAM used as main memory and Shadow
RAM -ANDY, HAZEL, LYNNE etc, the Master and B+128 is supplied
with another 64k of ‘Sideways’ RAM, so called because it appears as
four banks of 16k each mapped at the same locations (&8000-
&BFFF), which is also the locations that BASIC, ADFS and the other
‘Sideways’ ROMs occupy. This RAM can be used in a number of ways,
which are listed below.

The RAM in the Master 128 and Compact occupies slots 4,5, 6 and 7.
On the B+ it occupies slots 0, 1, 12 and 13 unless link 513 is moved (see
below).

Many BBC Model B owners have Sideways RAM fitted to their
machine usually in the form of a dedicated RAM card, but sometimes
as part of a ROM extension board. The latter method tends to offer
only 16k (one bank), whereas the dedicated cards offer 2, 4, 8 or even
16 banks.

There are some commands associated with Sideways RAM which are
listed here along with their derivative at machine level. Full
details of command syntax can be found in Chapters 2 and 4.

9

Master Operating System : A Dabhand Guide

*SRLOAD OSBYTE &44 OSWRSC
*SRSAVE OSBYTE &45
*SRREAD OSWORD &42
*SRWRITE OSWORD &43
*SRROM OSRDRM
*SRDATA OSRDSC

Using SRAM for ROMs

Many serious applications packages on the BBC Micro are written in
ROM format. This is not because ROM format is any better
intrinsically— indeed it imposes the serious constraint of having to
write your entire program in assembler— but because the whole of
user RAM is available for data. With only 32k of user RAM on the
original Model B this is important, and the ROM format soon became
popular for much serious software.

Nowadays, there is so much good software written in this format,
that there are often insufficient sockets in the machine to hold all
the ROM programs you are likely to want. With Sideways RAM this
is not a problem. If a ROM program is copied onto disc, it can be re-run
in Sideways RAM, and the ROM need never again be plugged in. A
further advantage is that ROM-based software will often co-reside
with RAM based programs, and they are not wiped out (except on the
Compact when *FX200,3 is used) on reset.

Finally, they can always be programmed or ‘blown’ into an actual
ROM or EPROM, and then the program will be in the machine
permanently.

Making a Disc Image

To make a ‘disc image’ of a ROM, you must first plug the ROM into
the computer (whilst switched off). See your User Guide for details
of how to do this. Then, by typing *ROMS, you can see in which
socket (0-15 or 0-F) you have placed the ROM. Listing 5.2 will save
plugged-in ROMs to disc.

Copying published ROM software onto disc must only be done if the
publisher permits personal backups. Some ROM software is copy-

92

e

Shadow & SRAM

protected to discourage piracy. It tries to write to itself which will
fail in a ROM, but will succeed in Sideways RAM. The software then
crashes if a successful write occurred. Another protection method is
for the code to check itself to see if it was there at power-on. Acorn
Sideways RAM is not write-protected or battery backed, and so some
protected ROM software may not run.

To reload a saved ROM image into Sideways RAM the *SRLOAD
command is used. The syntax is:

*SRLOAD <filename><load addr><bank id> (<Q>){<l>)

The filename is that of the ROM image on disc. The load address is
always &8000 for ROM software (the & is not used in the command).
The bank address denotes which bank of Sideways RAM is to be used.
On the Master and Compact the available banks are 4,5,6 and 7. On
the BBC B+, the banks are 0,1, 11 and 12. To provide compatibility
across the two machines the letters W,X,Y and Z can be used instead.
Get into the habit of using the letters rather than numbers. On the
Master and Compact W=4, X=5, Y=6 and Z=7. On the BBC B+, W=11,
X=12, Y=0, and Z=1. Link S13 on the BBC B+ may be moved so that
Y=14 and Z=15, and the system ROMs which normally occupy those
slots subsequently appear as ROMs 0 and 1. Note that on the BBC B+,
the *SRLOAD command takes a hex parameter for the banks &A-
&F, without the &.

On the Master Compact only, an additional option ‘I’ (for initialise)
can be specified with the *SRLOAD (and *SRWRITE) commands. This
loads the image in, and then updates the ROM table, which is
located at &02A1. The contents of the ROM type byte (the seventh
byte of the ROM you have just loaded, location &8006) is copied into
&02A1+n where n is the bank number. This is necessary for the MOS
to recognise that the ROM is present. One way of discovering which
ROM s are present in the machine is to read the 16 bytes from &02A1
to &02B0 on the 1/0 processor. This feature is supplied on the Master
128 in MOS 3.21 onwards.

The ‘T’ suffix should not be used when loading a ROM which claims
workspace in memory (see Chapter 6, and below). This is because the
initialisation procedure does not cover claiming workspace. You must
press CTRL-BREAK before using such ROMs.

93

Master Operating System : A Dabhand Guide

Workspace claims and Frugalising

When a ROM claims workspace in memory (see Chapter 6) it does
this by placing a byte in a table starting a &0DFO on the I/O
processor. The byte used is &0DF0+n, where n is the slot number of
the ROM. The byte placed is the highest page number claimed— if
claiming two pages from &1900, the byte used will be &1B. On the
BBC B+ B/E, this number can never exceed &80, as this is where RAM
stops, and thus the top bit of the byte is free for another purpose.
This purpose is frugaling. If the top bit of the workspace byte is set,
this is a signal that the ROM should not initialise at power-up. It
should regard itself as *UNPLUGged. On the Master and Compact,
workspace can be claimed in HAZEL (&C000-&DFFF), so this system
is unsuitable, and instead a separate *UNPLUG system is contained
in the MOS.

Using SRAM for Data Storage

The Sideways RAM in the BBC B+ and Master Series can be used in
two modes, known as pseudo and absolute addressing. In absolute
mode each slot is identified by its normal memory map address, and
slot or ROM number ie to save a Mode 0 screen image into Sideways
RAM slot Z the command would be:

*SRURITE FFFF3000+5000 8100 2

Absolute mode is necessary when you need to specify which socket is
needed, or it is convenient to refer to memory by the map address.
Pseudo mode has the advantage of offering your program one
contiguous block starting from &0000, and ROM slot names (to &FFBF
- 64 bytes are used for identification), and ROM slots can be ignored.

Listing 5.3 is a program which uses the pseudo-addressing system to
save three Mode 0 screens to sideways RAM, and then recall them
very quickly.

Writing your own ROMs

Sideways RAM offers the perfect environment to develop Model B
software. Programs can be assembled and tested in Sideways RAM
before being placed permanently in ROM or EPROM. This avoids
having to program many EPROMS (a slow process) before getting it
right. Full details of the protocols required for ROM software are
given in Chapter 6.

94

0

Shadow & SRAM

Sideways RAM on the Model B is often fitted in such a way that any
write access to addresses &8000-&BFFF will go to the Sideways
RAM.

This means that you can start your assembly code with:
P¥=88000

and the code will be assembled straight into Sideways RAM. On the
B+/M/C things are not so straightforward. To move code into
Sideways RAM, the *SRWRITE command is used, and the object code
must first be assembled in ordinary RAM. However the code must be
assembled so that it will run in Sideways RAM, ie the start address
must be &8000. BASIC 2 allows you to specify a start address for the
code, which is not the same as the place the object code is stored. P%
is set to the normal start address, and O% is set to the address where
code is to be stored. Listing 5.4 is an example of this technique. It
assembles a simple ROM program to alter the start-up message on
BREAK and CTRL-BREAK

Low Level Paging Control

Paging of RAM banks is done by certain switches which appear on
the memory map, and can be written to. These switches are located
at two addresses. The first, known as ROMSEL, standing for ROM
select, is located at &FE30 (I/O processor) on all machines. This
controls the Sideways RAM banks only. The second, ACCCON,
standing for access control, is located at &FE34. This is present on the
Master and Compact, and in a limited form, on the BBC B+.

Model B and Electron

On the Model B and Electron there is no shadow RAM. ROMSEL is
only four bits wide, and therefore only values of &00 to &0F are
valid— each selects the page of ROM/RAM which matches the
number given. This appears at &8000-&BFFF. The rest of the
memory is single-page only. Note that there is a 768 byte section
(filled with ROM) from &FD0O to &FEFF which is switched out to
1/0 ports, and cannot be switched in.

If any third party Sideways RAM is fitted to a Model B or Electron,
it is usually accessed by putting the bank number into ROMSEL. For
writing to memory however, the practice varies. Some Sideways
RAM systems, including most of the 16k only ones, are wired so that

95

Master Operating System : A Dabhand Guide

any write operations to addresses between &8000 and &BFFF are
directed to the sideways RAM. Multiple bank systems tend to use a
control port mapped in a similar manner to ROMSEL, but often at a
different address.

ACCCON is not present on the BBC B or Electron, and any accesses to
&FE34 will have unpredictable effects. Note that the permanent
claiming of write lines to addresses between &8000 and &BFFF can
cause problems if you then try to fit a second Sideways RAM module,
or more subtly, you try to develop code in one of the new bank-
switching EPROMSs such as the 27513 and 27011 devices.

Model B+

In addition to Model B and Electron type ROM selection, there are
two controls which toggle the 20k plane of Shadow memory (&3000-
&7FFF) and the 12k of Sideways memory.

The top bit (bit 7) of ROMSEL controls the paging of the 12k of
Sideways RAM. If set, then accesses to addresses &8000 to &AFFF
are directed to the 12k special Sideways RAM. If clear, then the
ROM bank as determined by the lower four bits of ROMSEL is
accessed. Some software does not intelligently mask out the top four
bits of ROMSEL, (including MOS 2.00) and thus attempts to access
ROMSs with numbers between 128 and 135, will access this special
Sideways RAM. For example an 8k language ROM can be loaded into
this RAM, and started up with *FX142,128. Doing this, however,
will not re-select the language on BREAK.

The 20k of shadow RAM is switched by the top bit of ACCCON
(&FE34). When the bit is set, the shadow bank is selected. When
clear the main bank is selected. By toggling this bit directly, it is
possible to flick between the two planes for animation purposes.
Note however that you can only write to the bank which is currently
displayed, as the single toggle controls both display and read/write
access.

Like the Model B/Electron, the BBC B+ has 768 bytes from &FD00
and &FEFF permanently banked out to I/0.

Master 128 and Compact

This offers a greatly expanded set of controls. Here is a summary:

96

B R

Shadow & SRAM

ACCCON—&FE34 Read and Write

b7 IRR 1=Causes an IRQ to the processor

b6 TST 1=Selects &FC00-&FEFF read from ROM
b5

IF] 1=Internal 1 MHz bus
0=External 1 MHz bus

ITU 1=Internal Tube
0=External Tube

Y 1=Read/write HAZEL &C000-&DFFF
0=Read/write ROM &C000-&DFFF

b2 X 1=Read/write LYNNE
0=Read/write main memory &3000-&8000

bl E 1=Causes shadow if VDU code
0=Main all the time

b0 D 1=Display LYNNE as screen
0=Display main RAM screen
ROMSEL—&FE30 Write Only (Copy in &F4)

b7 RAM 1=Page in ANDY &8000-&8FFF
0=Page in ROM &8000-&8FFF

b6 Not used
b5 Not used
b4 Not used

b3 PM3 Select ROM bank
b2 PM2 Select ROM bank
bl PM1 Select ROM bank
b0 PMO Select ROM bank

Names Explained

ACCCON is a read/write register, and it is permissable to write code
that reads it directly, although you should use OSBYTE &96 and &97
if want your code to work on the 6502 Second Processor.

HAZEL is the name given by Acorn to the 8k of RAM used by the MOS,
filing systems, and other ROMs, at addresses &C000—&DFFF.

MOS—G 97

Master Operating System : A Dabhand Guide

ANDY is the name of the 4k of RAM used by the MOS at &8000—
&8FFF.

LYNNE is the name of the 20k shadow screen.

Your code should always store the current ACCCON setting, alter it
to your own requirements, and then reset it to the original value
before you exit. Any setting of bits 6 and 7 should be done while
interrupts are disabled. At bit level, ACCON is arranged as follows:

b7 : This causes an IRQ to occur. If you set this bit, you must write a
routine on IRQ2V to clear it.

b6 : If set, this switches in the ROM at &FDO0—&FEFF for reading,
although writes to these addresses are still directed to 1/0. The MOS
will not work properly with this bit set. MOS 3.21/5.10 uses this
feature to place some of the reset code in this area, which is run at
power up. Previously it contained an ASCII text listing the people
who developed the computer.

b5 : If set, the internal 1 MHz bus on the Master 128 is selected, and
accesses to FRED and JIM appear on the cartridge port, which is
where the internal 1 MHz bus is wired. If clear, the normal external
bus is used, IDC socketed under the keyboard.

b4 : If set, the internal Tube connector is used. If clear, the external
connector under the keyboard is used. This control could be used to run
two Tube processors.

b3 :If set, accesses to &C000—&DFFF are directed to HAZEL, an 8k
bank of RAM. If clear, then operating system ROM at these addresses
is used. The MOS uses both, and contains all the necessary switching
code to ensure that the right bank is selected at the right time.

b2 If set, read /write accesses to &3000—&8000 are directed to
LYNNE, the shadow screen RAM. If clear such accesses are to the main
RAM at these addresses. This control does not affect the screen
display, which is determined by the setting of bit 0.

b1:When the shadow screen is active, the writing of characters and
graphics are to one bank of RAM, but ordinary memory manipulation
is in the other bank. To avoid constant switching by applications
software, the memory controller has a special feature, activated by
setting this bit. The feature is that if the processor program counter
is between &C000 and &DFFF, read/write access is directed to the
LYNNE shadow RAM. If the program counter is anywhere else main

98

p

Shadow & SRAM

RAM is accessed. The MOS VDU driver code is situated in this area.
The system works by direct hardware links between the 65C12
address bus, and the memory controller. If this bit is clear, then all
accesses are to normal RAM.

b0 : If set, LYNNE memory is displayed as the current screen. If clear,
then main RAM between &3000 (or higher) and &7FFF is used.
Altering this bit directly will flick instantly between the two
screens. The easiest way to do this is to EOR ACCCON with &01.
Remember that unlike the BBC B+, the hidden screen can be updated
by correct use of these two bits, which are controlled by MOS calls
OSBYTE &70/&71. ACCCON on the B+ is a write only register, so it's
state must be read from the RAM copy, bit 4 of the VDU status byte.

ROMSEL on the Master Series offers similar control to the earlier
machines. The bottom four bits control which of 16 banks of
ROM/Sideways RAM appear in the memory map between &8000 and
&BFFF. Bit 7 controls ANDY, a 4k bank of RAM located between
&8000 and &8FFF, and used by the MOS as graphics workspace, and
the function key string buffer. When set, the RAM in ANDY appears
between &8000 and &8FFF. When clear, this area is occupied by the
ROM bank selected by the bottom nibble of ROMSEL.

High Order OSWORD &05 and &06

There are some misconceptions about OSWORD &05 and &06 when
used to access paged memory using an address in which the high
bytes are &FFFE ie XY+2=&FE, XY+3=&FF. On the Model B+, this
call will access the 12k special Sideways RAM, (addresses
&FFFE8000 to &FFFEAFFF) and the 20k shadow screen (addresses
&FFFE3000 to &FFFE7FFF).

The feature is however implemented in DFS, not the MOS, and did
not appear on all versions of the BBC B+ 1770 DFS. It should
therefore be avoided on applications intended for commercial
release. On the Master 128 and Compact, the feature does not exist,
despite documentation to the contrary. However in ADFS only, itis
possible to *LOAD and *SAVE data from shadow RAM to disc. This is
done by specifying addresses using the &FFFE convention. The
shadow screen must be currently selected for display (ACCCON b0)
although not necessarily for writing, and the load address must have
&FFFE as its higher order address (either in the file attributes or
explicitly in the OSFILE command).

99

e

F

Master Operating System : A Dabhand Guide

Listings
Listing 5.1

REM Save ROM slot to disc
REM (c) Dave Atherton
REM for B/B+/E/M/C

REM MOS:A Dabhand Guide

MODE 135

HIMEM=&3BFF

INPUT “ROM number (0-15) : “ R%

INPUT “Filename for ROM : ™ F$

100 FOR I%=0 TO &4000

110 I%?&3C00=FNpeek (I%+&8000,R%)

120 NEXT

130 OSCLI “SAVE “+F$+” 3C00+4000 O FFFF8000”
140 BD e
150 :
160 DEF FNpeek (!&F6,Y%)=(USR &FFB9) AND &FF

883BJB3V8NE

Listing 5.1. Save ROM slot to Disc —

Listing 5.2 7

REM Sideways RAM addressing

REM (c) Dave Atherton 1987

REM for B+128/M/C ~
REM MOS:A Dabhand Guide

MODE 0

FOR R%=ASC”W” TO ASC”Z2” ~-
OSCLI “SRDATA “+CHRS$ R%

NEXT

88IBLEEYRE

110 REM Some complex patterns Rp

130 DIM T$(2):T$ (0)="SIN”:T$ (1)="COS”:T$ (2)="COS"

140 VvDU29,640;512;

150 PROCpic (300, 300, 20, 24,2, &0000)

160 PROCpic (50,300, 60, 6,0,&5000)

170 PROCpic (600,10,100,8,2,&A000)

180 PRINTTAB (10,5)“All pictures now saved in sideways
RAM”

190 PRINTTAB(16,7) “Press SPACE to recall them.”

200 FOR I%=0 TO &A000 STEP &5000

210 REPEAT UNTIL GET=32

220 OSCLI “SRREAD FFFF3000 FFFF8000 “+STRS~I%

100 -

g

Listing 5.3

Shadow & SRAM

230 NEXT

240 GOTO 200

250 END

260 :

270 DEFPROCpic (A%,B%,C%,petals$, F%, addr$)

280 FOR B%=60 TO 800 STEP C%

290 A%=B%/6

300 MOVEO, A%+B%

310 FOR i=0 TO 2*PI STEP PI/100

320 IF F%<2 F%=1-F%

330 radius%=EVAL (T$ (F%)+” “+STRS (i*petals%)) *A%+B%
340 DRAW SINi*radius$%,COSi*radius$

350 NEXT

360 NEXT

370 OSCLI “SRWRITE FFFF3000+5000 “+STR$~addr%
380 CLS

390 ENDPROC

Listing 5.2. Sideways RAM Addressing.

10 REM ROM Assembly on B+/M/C
2 REM (c) Dave Atherton 1987
3 REM for B+/M/C

40 REM MOS:Dabhand Guide

0

60 MODE 7

0 osnewl=&FFE7

80 osasci=&FFE3

90 FOR pass=4 TO 7 STEP 3
100 P%=£8000 : 0O%=&5000

110 [OPT pass

120 EQUB 0

130 EQUW O

140 JMP service

150 EQUB &82

160 EQUB copyr AND &FF

170 EQUB &BB

180 .title

190 EQUS “Dave’s Master 128~
200 EQUB 0

210 .copyr

220 EQUB O

230 EQUS “(C) Dabs Press”
240 EQUB 0

250 .service

260 PHP

101

Y

Master Operating System : A Dabhand Guide

270 PHA

280 PHX

290 PHY

300 P #&27
310 BEQ message
320 aMP #3

330 BNE out

340 .message
350 LDA #11

360 JSR osasci
370 JSR osasci
380 LDX #0

390 .loop

400 LDA title,X
410 BEQ cr

420 JSR osasci
430 INX

440 BNE loop
450 .cr

460 JSR osnewl
470 JSR osnewl
480 .out

490 PLY

500 PIX

510 PLA

520 PLP

530 RTS

540]

550 NEXT

560 *SRWRITE 5000+200 8000 2z
570 PRINT”Now press CTRL-BREAK”

Listing 5.3. ROM Assembly on B+/M/C.

Listing 5.4

REM Store data in Shadow RAM
REM (c) Dave Atherton 1987
REM for B+/M/C

REM MOS:Dabhand Guide

MODE 135

VvDU23,1;0;0;0;

PROCassemble

REM Create screens and store them
FOR I%=0 TO 18

E8BIABBBEYE

=

102

I e A

Shadow & SRAM

110 CLS

120 FOR J%=0 TO 9
130 I$=CHRS$ (128+RND (9))+CHR$141+”Screen “+STRS$I% !
140 PRINTTAB (J%*3,J%*2)I$
150 PRINTTAB (J%*3, J%*2+1)I$ |
160 NEXT i
170 !adr=&3000+I%*&400: ?direct=0:CALL M% j
180 NEXT
190 cLs ’
200 PRINTTAB(2,4)”18 screens saved in shadow RAM”

210 PRINTTAB(4,6)”“Press a key to recall them”

220 PRINTTAB(0,20)”NB : Main RAM &3000-&8000 unaffected”
230 *FX21

240 IFGET

250 FOR I%=0 TO 18

260 !'adr=&3000+I%*&400:?direct=1:CALL M$%

270 NEXT

280 vpu23,1,1;0;0;0,10,10

290 END

300 DEFPROCassemble

310 DIM M% &100

320 scr=&70:adr=&72:pages=&74:direct=&75

330 FOR pass=0 TO 2 STEP 2

340 P%=M%

350 [OPT pass

360 LDA #4

370 STA pages \ &400 bytes

380 LDA #0

390 STA scr

400 STA adr \ read from &7C00

410 LDA #&7C

420 STA scr+l

430 LDA &FE34

440 PHA

450 ORA #4

460 STA &FE34 \ select LYNNE

470 .loop

480 LDA direct \ 0=Save l=Load

490 BEQ jsave

500 JSR load

510 BRA inc

520 .jsave

530 JSR save

540 .inc

550 INC scr

560 INC adr

570 BNE loop

580 INC scr+l \ 4 pages

590 INC adr+l

600 DEC pages

610 BNE loop

103

Master Operating System : A Dabhand Guide

104

620
630
640
650
660
670
680
690
700
710
720
730
740

PLA

STA &FE34
RTS

.load
LDA (adr)
STA (scr)
RTS

.save
LDA (scr)
STA (adr)
RTS

JNEXT
ENDPROC

Listing 5.4. Store data in Shadow RAM.

B e e L

6 : Sideways ROMs

Sideways ROM Format

As outlined briefly in Chapter 5, one popular format for programs on
the BBC and Master series micros is the ROM format. Programs writ-
ten in this format have the following features:

They can use the whole of program memory (&E00 to &8000),
especially attractive for programs which use data areas, such as
wordprocessors and databases.

* They can be ‘blown’ into an EPROM or ROM, and fitted to the
micro as a permanent fixture. For this reason software such as1/0
drivers, filing systems etc., are best written in ROM format.

* They can co-reside with programs written in BASIC, machine
code or any other language. This makes the format attractive for
utility type software written to aid development, editing and de-
bugging, ie, BASIC toolbox and machine code monitors.

¢ They must be written in assembly language—a drawback for no-
vice programmers —and unless complex ROM switching is em-
ployed they are limited to a length of 16k (BBC B/B+/E) or 32k
(Master).

¢ They adhere to a standard format employing a ROM header -
which allows the MOS to know of its existance and for it to proc-
ess the various service calls issued to it by the MOS.

¢ The standard supports automatic Tube transfer, and a number of
other operating system housekeeping facilities, such as operating
system calls, calls to read data and execute code in other Side-
ways ROMs.

All the BBC microcompuiter range contain operating system commands
to support software fitted in ‘Sideways’ or ‘paged” ROM. This means
that many of the mundane operations such as switching in and out
the right ROM and correctly recognising ROMs at power-up are invis-
ible to the user.

105

Master Operating System : A Dabhand Guide

Writing a ROM is not unlike writing any other assembly language
program, always remembering that (unless the program is purely for
Sideways RAM use) data and other information stores must be in a
RAM area of memory, as by definition, a ROM is a read only memory.

ROM Header

When writing ROM software - that is software intended to run from
one of the paged ROM/RAM banks at addresses &8000 to &CO000 - the
first few bytes must be assembled to a standard format to form the
ROM header. The format is as follows and is explained below:

. romentrypoint
JMP lang

JMP serv

EQUB romtype
EQUB copyr-&8000
EQUB verno
EQUS title$
.copyr EQUB &00
EQUS “(C)”
EQUS copyright$
EQUB &00

EQUS vernum$
EQUB &00

EQUD tubeaddr

JMP lang

A jump to the language entry point, if any. If the ROM is a service
ROM, then this should be replaced by three zeros, ie,

EQUN &00
EQUB &00

Languages may be designed solely for use on a certain co-processor, in
which case, this jump should be coded in the machine code of the tar-
get processor. This may cause difficulties with processors that cannot
code an absolute jump in three bytes. The MOS will copy the code
across the Tube, to the relocation address—more details on this can
be found below.

JMP serv

This is assembled at the service entry point and performs a JMP dir-
ect to the code written to handle the service calls. With the excep-
tion of BASIC, all ROMs must have a service entry point.

106

B e L

Sideways ROMs

EQUB romtype
See below for the make-up of this byte.

EQUB copyr-&8000
The low byte of the address of the label ‘copyr’

EQUB verno

Internal version number. This has no effect on the code. It is dis-
played (in hex) as part of the Master *ROMS command. It is never
used or displayed on Models B/B+/E.

EQUS title$

The title of your ROM. There is no need to terminate this with a car-
riage return character. Use of more than one word is permitted, but it
is not a good idea to use control characters in the title, as some utility
programs will then not work properly—it also looks ugly if the micro
is run in any mode other than Mode 7. The title string will be dis-
played by the *ROMS command, and if a language, on selection.

.copyr

EQUB &00. The title string is terminated by a zero. This location is
pointed to by the byte at &8007.

EQUS u(C)”
Must be ASCII codes &28, &43, and &29 in order.

EQUS copyright$

Usually the year and authors name, ie, “1987 David Atherton”, but
again, this has no effect on the working of the code. Some utility pro-
grams display this message as part of extended versions of *ROMS

EQUB &00

The copyright string termination byte - must be zero.

EQUS vernum$

Doesn’t need to be the same as “verno’. This might be “1.20”, or
“Two”. The convention to use is “X.YY” where a new number in X re-

107

Master Operating System : A Dabhand Guide

presents major changes, and changes in YY are minor adjustments.
This entry is optional, but mutually exclusive with the Tube address.

EQUB &00

A terminator which must be present if you use the version number.

EQUD tubeaddr

A 32-bit address for Tube relocation. The MOS will copy any langu-
age across the Tube to this address. This entry is optional, but with-
out it, languages may not run properly on co-processors. If a tube addr-
ess is required, you must not use the version string. When a language
starts across the Tube, the address following the first zero byte after
the (C) string is taken as the Tube execution address.

Entering a Language ROM

There are three ways of executing the code in a Sideways ROM—as a
language, by service calls, or by use of the extended vectors.

The language entry of a Sideways ROM is at &8000. There are only
three bytes available here, so the language should immediately
perform a JMP to code elsewhere in the ROM. It is possible to write
ROM code for non-6502 processors, to be transferred across the Tube to
another co-processor in which case, all the code, including the ini-
tial IMP should be written in the code of the target processor.

ROM Service Calls

First some terms of reference. Within this description, the term ‘you’
means the ROM code that you are writing. When the text says that
you must do things, it means that if you are writing a ROM program,
these are things you will have to write code to deal with.

ROMSs must respond to a number of ‘service’ calls, all of which in-
volve the MOS selecting your ROM, and performing a JSR to &8003,
ie the service call entry point. Upon entry into your ROM, the accu-
mulator contains the service call number, X the socket number of your
ROM and Y may contain a parameter.

As a general rule, if you ‘claim’ a service call, then you exit the call
with the accumulator set to 0, because you have recognised the call
as one appropriate to your program and have performed some func-

108

gt e

Sideways ROMs

tion. You wouldn’t want another ROM to pick it up and also deal
with it, which is what will happen if the call isn’t claimed. On the
other hand some functions like *HELP are clearly intended for every
ROM, and it is wrong to claim such calls. In this case you should save
all registers, process the call, and then restore all registers before
RTSing. If you don’t want to service a particular code at all, you
should exit with all registers and flags preserved.

Here is some sample code, which might be the core of your service
routine. Each call that you will service is dealt with by a conditio-
nal branch. Only known calls are serviced, others are ignored, and
passed on. Exit points for claimed calls, and unclaimed calls are also
supplied. The main code in the ROM may JMP to these to exit.

.serv

PHA \ stack everything

TXA

PHA

TYA

PHA

TSX

LDA &103,X \ Get accumulator

CMP #&04

BEQ staramd \ * commands

CMP #&09

BEQ help \ *HELP

CMP #&27

BEQ reset \ Master BREAK

CMP #&03

BEQ reset \ Model B BREAK

exit \ General no-claim exit point
PLA

TAY \ By definition any call not
PLA \ dealt with in this list
TAX \ is passed through, with
P1A \ all registers preserved.
RTS

.claimed \ General ‘claimed’ exit point
IDA #0 \ Setup accumulator

TSX \ for de-stacking

STA &103,X

JMP exit \ and exit with A=0

The call issued by the MOS (or yourself as a service ROM, for inst-
ance service call &0A, or even from a program in main memory) is OS-
BYTE &8F, with X set to the service call number, and Y carrying any

109

Master Operating System : A Dabhand Guide

parameters. By the time it reaches you (at &8003), the service num-
ber is in A; X contains your ROM number (which is also in &F4), and Y
contains any parameter, as passed by the original OSBYTE &8F.

Service Calls

These are the service calls that could be issued. Not all are issued on
all machines, and this is noted.

&00 (0) Nothing required All

Another ROM has claimed this call, and you should ignore it—ie,
you should RTS with all registers intact. Debugging code may wish to
print some message to say that this call has been received, but gener-
ally it should be ignored and certainly final release programs should
never do so. This call cannot be claimed. Note that ROM scanning
stops once this call is claimed, so any attempt to do so will deny call
access to lower priority ROMs.

&01 (1) Claim Static Workspace in main RAM All

Static workspace often also called absolute workspace, should only
be claimed by filing systems. It always starts at &E00 on the I/0O pro-
cessor (on all machines) and is shared by the filing systems. Only one
filing system can use the workspace at once.

Entry : Y=current upper limit (hi-byte of address) of workspace.
Exit :Y set to upper limit of static workspace required by you, or
entry value, whichever is the greater.

This call is passed to all ROMs, and when done, OSHWM is set accor-
dingly. Note that ROMs cannot immediately use this static alloca-
tion—they must claim it for use by issuing service call &0A

(which is different to responding to service call &0A—see below).
This call must not be claimed. Only filing systems should respond to
it. See also calls &21 and &0A.

&02 (2) Claim Dynamic Workspace in RAM All

Dynamic workspace, also called Private workspace (but not to be con-
fused with Private RAM on the B+ and Master series micros) may be
claimed by any ROM, language or service, filing system or not. This
RAM is exclusive to you, and can be relied on to hold data until hard

110

I e e

Sideways ROMs

reset, and in practice, until power down. Workspace is claimed in un-
its of 256 bytes, ie, a page at a time.

Entry: Y set to hi-address of next available page of memory.
Exit :Y increased by you by the number of pages you require of
private workspace. Your code will need to note the Y value

to determine where to place variables etc.

A byte is reserved for you at &DF0+ROM number. It is practice to
store the start page of your private workspace in the first six bits of
this byte, the top two bits being used for ‘frugalising’, ie, if they are
set, the ROM does not initialise, see Chapter 5 for more details. On
the Model B+, several ROMs use this frugalising system, particular-
ly Acorn filing system ROMs. However, on the Master, top-bit fruga-
lising cannot be used, due to the fact that the top bit is used for work-
space identification. However you can use values between &40 and
&BF to signify that your ROM is frugalised on a Master, as these pa-
ges are never used as workspace. Whether any utility programs re-
cognise this is another matter! This call must not be claimed. See
also service call &22.

&03 (3) Offer auto-boot B/B+/E

This call is provided for filing systems during initialisation. If you
are a filing system you should respond as follows:

1. Check if any key is pressed on the keyboard

(use OSBYTE &81 with Y=&FF).

If not, move to step 5.

Is it the unique key appropriate to this filing system.

If not, exit preserved registers ie, no claim.

Insert all the vectors appropriate (FILEV, ARGSV, FINDV ...).
If you wish, print your name, and do any other startup things.
Was Y=0 on entry? If not, move to step 9.

Select your root directory, then execute a file called !BOOT in the
CSD according to your own conventions, ie, read any option sett-
ings and *LOAD/*RUN/*EXEC accordingly.

9. Zero the accumulator then exit.

®NNUTRWLN

On the Master at BREAK, this call is issued to the previous filing
system ROM only. At CTRL-BREAK, the call is only issued to the FS
ROM determined by *CONFIGURE, if it is a valid service ROM, and
no keys are being pressed. Otherwise the call is issued to all ROMs.

111

Master Operating System : A Dabhand Guide

&04 (4) Offer unrecognised ‘star’ command All
When a star command is issued, it is processed as follows:
1. The language passes the string to OSCLI.

2. Leading "*'s and spaces are stripped. -
3. The command is checked to see if it is a MOS command. If so,

the MOS processes it directly, and returns to the language.
4. If not, locations &F2 and &F3 are set to the start of the complete —

string. If there are padding spaces and stars, Y is increased so,

" LDA (&F2),Y will load the first alphanumeric character, and
the MOS issues service call &04. The text will finish with &0D.
You should check this. If the command is a language or filing ~
system selection call, you should re-issue the appropriate com-
mands—for example a language selection should not be done by

using JMP &8000 but by using: e
LDA #&8E \ Language selection call
LDX &F4 \ This ROM

JMP osbyte \ and call it

5. If you cannot respond to the command, and neither can other
ROMs, it is passed to the current filing system, in the form of
*RUN command. Filing system ROMs thus get a second chance to
take the command, by executing a routine rather than looking on
backing store for a file. This is how DFS executes *ACCESS,
*BACKUP, etc. Picking up commands this way means that they
won't work if you are not the current filing system, because such e
commands tend to alter static workspace memory in a way that
would be meaningless and potentially disastrous if another filing
system were active.

6. On the Master Series, if the current filing system cannot *RUN
the file, the library filing system is offered the command.

7. Finally if no-one recognises the command, the MOS executes a ;
BRK with the ‘Bad Command’ error. -

ROMSs often respond to a number of “* commands, and the usual

- method of dealing with them involves reading a table. The Acorn ~
convention is that a ROM should respond without case sensitivity,
and that the command may be abbreviated if terminated by a full
stop (ASCII &2E). You may, perhaps, insist that a minimum number
of letters is used to avoid clashing with, for instance, DFS commands.

112 -

e

Sideways ROMs

The convention for parameters after a command is that they can be
terminated and separated by a space (ASCII &20) or a comma (ASCII
&2C), and that additional spaces are disregarded.

The MOS gives you no help in writing a command table and decoder.
You must do this yourself. If all the text of all your commands can be
fitted into 256 bytes, the best method is to index the table by X, and
use Y to check each letter of the command. After testing the first
item in your table of commands, you would reset Y, but not X, to look
at the next item. A common practice of ROM writers is to put the rou-
tine address in hi-lo order after the command string. This is because
all routine addresses must have a high byte of &80 or greater and
the text of the command will never have values exceeding &7E.

&05 (5) Offer an Unrecognised Interrupt All

When an interrupt is received, the MOS first vectors through IRQ1V,
and tests the devices it knows about (the keyboard, the RS423 port,
etc.) to see which caused the interrupt. If it cannot find any such de-
vice, and the interrupt is not masked (see OSBYTEs &E7-&E9) , it is
then signalled to Sideways ROMs as call &05. You must check that
your device has indeed caused an interrupt, and if so, perform your
processing and claim the call. If no ROM claims the call, it will be
passed to IRQ2V. You are servicing a MOS call here, not an direct IRQ,
so you should terminate with RTS, and not RTI. This routine must be
serviced very quickly, so if you don’t use the call, exit straight away.

&06 (6) Offer an Unrecognised BRK All

When this call is issued a BRK has occurred. You are being offered a
chance to deal with it, before the MOS error handler prints out the
appropriate error message. After you have dealt with this call, then
as long as you don’t claim it, it is then indirected through BRKV, usu-
ally to the error handler of the current language.

Upon entry &FD/&FE point to the error number, which is followed
by the error text—this may be a ROM address, in which case OSBYTE
&BA will tell you which ROM contains the error text. &F0 contains
the stack pointer immediately after the BRK occurred.

When writing ROMs which themselves generate errors, it is a good
idea, upon an error occurring, to copy the BRK, the error number and
the error message into main RAM, and execute it there, to facilitate
ROM switching as you return after the error to the current language.

MOs—H 113

Master Operating System : A Dabhand Guide

The conventional place to use for this purpose is the bottom of the
stack starting at &100. This call may be claimed. If it is not claimed,
Y must be preserved.

&07 (7) Offer an Unrecognised OSBYTE call All

A call has been made to OSBYTE (&FFF4), or a *FX command has
been issued which is unknown to the MOS. If you supply additional
OSBYTE calls, you should respond to this by checking location &EF to
see if the OSBYTE number is one that you respond to. If so, &F0 and
&F1 will contain the X and Y values passed by the user.

If you wish to respond to OSBYTE calls, you should obtain a number
from Acorn, and respond only to this number. Acorn are currently only
offering sections of OSBYTE calls, usually A=163 X=a given number,
and you may respond to any value of Y.

If you do respond, then claim the call. Otherwise preserve all re-
gisters and exit.

&08 (8) Offer an Unrecognised OSWORD call All

The user has issued an OSWORD call in the range &10 to &DF,
which is unknown to the MOS or any other Sideways ROM. If you
supply additional OSWORD calls, you should respond by checking
&EF to see if the OSWORD number is one that you respond to. The X
and Y values can then be found from &F0 and &F1 respectively.

This call is also issued if an OSWORD &07 (sound) command is issued
with a channel number between &1FFF and &EFFF. Note that you
can not respond through this call to OSWORD calls &EO0-&FF, as
these are passed to USERV instead.

&09 (9) Offer a *HELP Command All

A *HELP command has been issued. Each ROM responds with text
specific to itself. The conventional text to display is the ROM name,
version number, and then, on a separate line, indented by two spaces,
any keywords which generate extra help text. Teletext and general
control characters should be avoided to ensure compatibility and an
acceptable display in all screen modes. An example is:

Advanced DBFS 2.10
RDFS

114

gt e

Sideways ROMs

To respond to *HELP <text>, the <text> string is found at (&F2),Y,

terminated by a carriage return (&0D). The ROM should check this
text, possibly using a table structure as described in call &04 above,
and if a keyword is matched, type out the relevant text.

&0A (10) Claim Static Workspace All

This call is only applicable to filing systems. You should issue the
call to indicate that you require the static workspace, which means
that you are about to select yourself. After making this call, you may
safely proceed to put your data in the private workspace, and set a
flag to indicate that the workspace is now yours.

If you receive this call, it means that another filing system is claim-
ing the space, and thus you’ve been deselected. You should copy any
vital data into your private workspace area, and flag the fact that
the workspace is no longer yours. This is particularly important on
the Master as you may only be deselected on a temporary basis.

&0B (11) Release ability to cause NMIs All

If you are a filing system which uses NMls, you should issue this call
when you no longer require the NMI. You should set Y to the ROM
number of the previous owner—see call &0C.

If you receive this call, you should compare Y with your own ROM
number (CPY &F4) and if you find that this test matches, you may use
the NMI space again.

&0C (12) Request/Clear NMI ability All

This call should only be issued by filing systems. When you require
the NMI, you should issue this call with Y=&FF. When the call re-
turns, the previous owner’s ROM number is in Y, and you should store
this safely, to use when you receive call &0B. Otherwise, when this
call returns you may use the NMI safely.

If you receive this call, and you have control of the NMI, you should
set Y to your ROM number (LDY &F4 will do this), store any valuable
data kept in the NMI area (&D00-&D9F BBC, &D00-&DS5SF Master),
and claim the call (ie, return with A=0). If you don’t use the NMI or
if you are not a filing system, you must return this call with registers
intact. The way to do this is to simply not respond to the call.

115

Master Operating System : A Dabhand Guide

&0D (13) Return Data Pointer for RFS All

This call is made by the MOS to find out which ROMs contain ROM
Filing System (RFS) files. If you don’t contain RFS files, ignore this
call. Also, if the register 15-Y is less than your ROM number, ignore
the call. If 15-Y>=X, you should put 15 minus your ROM number in
&F5, a pointer to the start of your RFS data in &F6 and &F7, and
claim the call. The following code will do the job for you.

.servicel3
TYA
EOR &OF \ Invert Y value
QP &F4 \ Compare with ROM no
BCS ignore \ A < ROM no
IDA &F4 \ Get our ROM no
EOR &QF \ Invert it
STA &F5 \ Store it
TAY \ in Y as well
LDA #data MOD 256 \ Set up data pointer
STA &F6
LDA #data DIV 256
STA &F7
JMP exit \ Claimed exit (A=0)
.ignore
JMP out \ Unclaimed exit
&OE (14) Read Byte for RFS All

This call is made by the MOS to retrieve a byte from the ROM filing
system. You should check that &F5 contains your inverted ROM num-
ber, and only if so, return the byte pointed to by (&F5),Y in the Y re-
gister. If the ROM number doesn’t match, or if you don’t have any
RFS data, you should ignore this call. The following code will do the
job for you:

.serviceld

LDA &F4 \ Get our ROM number
EOR &0F \ Invert it

P &F5 \ Compare with &F5
BNE ignore \ If different, exit
LDA (&FS),Y \ Get the RFS byte
TAY \ Put it in Y

LDA #0 \ Claim the call

JMP exit \ Claimed exit (preserve Y)
.ignore

JMP out \ Unclaimed exit

116

I e L L

Sideways ROMs

&OF (15) Warning - Filing System Change All

If you are a filing system, you should issue this call during initial-
isation, after you have changed the vectors. This is to inform other
filing systems that a change has occured.

&10 (16) *SPOOL/*EXEC Files Closure Warning All

This call is only applicable to filing systems. If you are a filing
system, then before you close files open with *SPOOL and *EXEC, and
before you do a general *CLOSE, you should issue this call.

If you receive this call, and you are the currently selected filing
system, it means that another filing system is activating, and you
should close any *SPOOL or *EXEC files that you have open. If you
don’t want to close them, for example when the takeover is by a tem-
porary filing system, then you should claim this call.

&11 (17) Font Implosion/Explosion Warning B/B+/E

This call will never be made by the Master or Compact MOS. Oper-
ating Systems prior to 3.00 issues the call when processing OSBYTE
&14. It is a warning to ROMSs to move any data out of the way before
OSHWM changes.

Entry : Y=new page value of OSHWM

Exit : Do not alter, but if you have any data stored between the
previous OSHWM and the address Y*&100, then move it
before character set data destroys it.

&12 (18) Restart a Filing System All

This call starts a filing system. It may be issued at any point. If you
are a filing system, and you receive your start-up * command via
call &04, you should issue this call with Y=your filing system num-
ber. Some previous documents erroneously indicated that Y contained
the ROM number of the filing system. You can start filing systems
from user programs with *FX143,18,n where n is the filing system
number. This ought to generate a full startup, but it doresn’t on some
filing systems, eg, DFS 0.90.

&15 (21) Polling Interrupt for ROMs E/M/C

This call is made 100 times a second if the ROM polling semaphore is
non-zero. For an explanation of the ROM semaphore system, see the

117

Master Operating System : A Dabhand Guide

entries for OSBYTE &16 and &17 in Chapter 4. The Clock ROM pro-
gram at the end of this chapter is an example of the use of this call.
There are no entry conditions, and what you do during this call is up
to you. It is a good idea however to either make your routine re-
entrant or exit within 10ms!

&18 (24) Interactive *HELP M/C

This call was designed originally to run with an interactive text
help system. This has not appeared as a stand-alone product, but
does appear on ANFS, where typing *HELP ON <text> will *TYPE a
file called <text> in directory $.Library.!Help. The call is made by
the Master and Compact MOS after service call 9, and ANFS is the
only firmware to date to recognise it. The call should not be claimed.
If you wish to implement a help system, then respond to this call by
looking for text at (&F2),Y in the same way as service call &04 . If it
matches any of your keywords, then output the appropriate help
text. Acorn merely refer to this call as ‘reserved’.

&21 (33) Claim Static Workspace in HAZEL M/C

This call is similar in nature and operation to call &01, except that
the workspace allocations start not from &EO0, but &C000 in HAZEL.
The call is only issued by the Master Series MOS, where it is issued
before call &01. Note that the last available page in HAZEL is
&DB00~-&DBFF, therefore you should not increase Y to a higher fig-
ure than &DB. If you need more space, note what you took from call
&21, and claim the rest in call &01, which is guaranteed to come af-
terwards. Like &01, call &0A is issued to actually claim the space.

The MOS starts issuing this call with Y minus the number of pages
claimed by service call &24. Therefore, if you require more space
than this offers, you should claim it when call &01 is issued. The
call must not be claimed. Only filing systems respond to it. See also
call &01 and &0A

Entry : Y=Highest static page so far claimed in HAZEL, plus 1.
Exit :Y=As entry or higher if you need more.

&22 (34) Claim Dynamic Workspace in HAZEL M/C

This call is similar in nature and operation to call &02, except that
the workspace allocations are like call &21, in HAZEL. Again the
call only occurs on the Master Series. See call &21 concerning the last

118

g

Sideways ROMs

page of HAZEL. If a call &22 claim will increase Y above &DB, the
balance of workspace should be claimed when call &02 is issued. You
must not claim more pages than you said you would when you replied
to call &24. The call must not be claimed. See also call &02.

Entry : Y=Highest dynamic page so far claimed, plus 1.
Exit : Y=Entry plus the number of pages you require.

Note that ADFS and DFS cannot work with workspace between HA-
ZEL and main RAM. This will not occur with the standard ROM ver-
sions but could occur if the filing systems were run in lower banks.

&23 (35) This is Top of Static Workspace M/C

This call tells you the value of the top page of static workspace in
HAZEL, so that you can use more static workspace than you first as-
ked for, for example as buffers.

Entry : Y=highest page of static workspace.
Exit : Do not alter or claim.

&24 (36) Dynamic Workspace Requirements M/C

This call asks you how much workspace you will require in HAZEL.
Unlike call &22, we are not dealing in memory addresses at this sta-
ge, just numbers. Without bothering to read the value of Y, just decre-
ment it by the number of pages you will require.

Entry : Y=&DC minus number of pages claimed by higher priority

ROMSs.

Exit : Entry value minus pages required by you.

&25 (37) Advise Filing System Information M/C

Only filing systems should respond to this call. You should write in-

formation to the eleven bytes pointed to by (&F2),Y. The information

18:

Bytes 1-8 : Filing system name (ie, ADFS, DISC, etc.) terminated by
&20’s, ie, ASCII spaces.

Byte 9 :Lowest file handle used by the filing system.

Byte 10 : Highest file handle used by the filing system.

Byte 11 : Filing system handle

On exit Y is increased by 11. If you don’t respond to this call, the tem-
porary FS mechanisms (see Chapter 8) won’t work. Some “official’

119

B

Master Operating System : A Dabhand Guide

filing systems, such as VFS, and TELESOFT FS don’t respond and thus
won’t work as temporary filing systems. This call must not be clai-
med. Here is a typical coding of the response to this call:

LDX #0
.nloop

LDA fsname,X \ Copy name to (&F2)
STA (&F2),Y
INY

INX

CPX #8

BNE nloop
LDA handlo
STA (&F2),Y
INY

LDA handhi
STA (&F2),Y

LDA fsno
STA (&F2),Y
\ Restore any stack levels, A X but not Y
RTS

. £sname
EQUS “ANYFILE” \ Max 7 chars
EQUB &20

.handlo

EQUB &70 \ Lowest handle

.handhi

EQUB &74 \ Highest handle

.fsno EQUB &11 \ Filing system no (all imaginary!)

&26 (38) Close All Files M/C

The MOS issues this in response to a *SHUT command by the user.
Only filing systems should respond to the call. A filing system
should select itself, close all open files, and then exit. Don’t worry
about re-selecting the previous filing system - the MOS will sort ail
that out. The call should not be claimed.

&27 (39) Reset has Occurred M/C

The user has powered up, or pressed BREAK (including CTRL-
BREAK). The call is used by ANFS to reclaim the NMis. Otherwise it
is a general initialisation call. You can display start-up messages,
display initialise memory areas, check your environment, and do
the usual startup things. Remember that when you receive this call,
you haven’t yet claimed any memory, and so you can’t rightfully go

120

EREEEKEEEEEEEEEEES

Sideways ROMs

walking all over it. The call shouldn’t be claimed. NB:The call is
issued before filing system initialisation, so any code written to acti-
vate on this call should not access the filing system in any way.

&28 (40) Unknown CONFIGURE Option M/C

This call allows Sideways ROMs to use the non-volatile system sett-
ings in the normal manner. ROMs wishing to participate should in-
tercept this call and first check if any text follows the command.
Any such text is, as ever, pointed to by (&F2),Y.

If no text follows, ie, if (&F2),Y points to a carriage return (after dis-
posing of surplus spaces),the user has issued *CONFIGURE alone, and
the ROM should respond by typing a text message, consisting of each
keyword to which it will accept a configuring command, together
with some clues to the user of the parameters required. These will
appear to the user after the end of the list generated by the MOS and
if there is more than one, they should be in alphabetical order.

If some text is included, ie, if (&F2),Y points to a text string, then the
ROM should compare the text against the CONFIGURE commands
that it recognises. If the ROM in question has several star commands
and/or *HELP responses , it may be economic to use the same routines
deal with this. As usual, if a match is made, the command should be
claimed, otherwise, the ROM should provide and exit with all re-
gisters and the contents of (&F2) preserved.

Like star commands (service call &04), the MOS provides virtually
no help in processing the command. The ROM must work out which
parameter is being altered, and modify the CMOS RAM/EEPROM ac-
cordingly. Applications will normally use the bytes from 30-39. They
should be used very sparingly, as there is very little non-volatile
memory. If you are releasing a commercial product, it is a good idea
to apply for a non-volatile byte allocation from Acorn.

&29 (41) Unknown STATUS Option M/C

This is very similar to call &28. The command *STATUS has been iss-
ued, and the text following the command starts at (&F2),Y. If there
is no text, you should type out the currently configured setup (for your
non-volatile items only), and exit. If text follows, you must try to re-
cognise it, and if you do, print the status value of that item (only).
The MOS prints out either the numeric or string setting, and you
should follow this protocol.

121

Master Operating System : A Dabhand Guide

&2A (42) Language startup M/C
This call is issued by the MOS when a language is about to start up.
It can be used to activate language support ROMs.

&2B (43) Reserved All

This call is reserved for Acorn use. If you are writing a ROM and you
need your own service calls, once again apply to Acorn for your own
number, to avoid clashes with other producers.

&2C (44) Compact pointing devices C

This call is provided on the Compact only, to allow sideways ROMs
to respond to pointing devices fitted to the User Port.

Entry: Y contains an offset from &200 to pointer information
The information is:

&200+Y+0 ADVAL low byte
&200+Y+1 X co-ordinate low byte
&200+Y+2 X co-ordinate high byte
&200+Y+3 Y co-ordinate low byte
&200+Y+4 Y co-ordinate high byte
&200+Y+5 Spare

&200+Y+6 Spare

If you are responsible for moving a pointer or whatever in response to
this information, you should claim the call. Otherwise, ignore it.

&FE (254) Tube System has Initialised B/B+/M

This call is issued after I/O processor OSHWM has been determined.
The call is used to advise the co-processor that it may use the me-
mory between OSHWM and HIMEM for I/0 related work. The call is
always issued whether or not a co-processor is active, and on entry
Y=&FF if Tube hardware present, Y=0 if Tube hardware absent.

&FF (255) Tube System about to Initialise B/B+/M

This call is issued after BREAK and CTRL-BREAK, if Tube hardware
is fitted and active, immediately before generating the Tube sign-on
message, and initialising the configured (Master) or default
(B/B+/E) filing system. This call must be claimed to start the Tube.

122

B e L

Sideways ROMs

Languages
These are the calls you would expect a language to respond to:

&02 Allocation of dynamic workspace in main RAM .
&04 for selection using *languagename

&09 Standard although not extended *HELP

&22 Allocation of dynamic workspace in HAZEL
&24 Dynamic workspace claiming,.

A language is entitled to use zero page &00-&8F on the language pro-
cessor, although convention deems that &70-&8F is reserved for user
code. It should perform LDX #&FF.TXS, and has exclusive ownership
of &400-&7FF. The area between OSHWM and HIMEM can be used,
the boundaries of which can be read with OSBYTEs &83 and &84 re-
spectively. A language should redirect BRKV to itself, and deal with
errors in a sensible way, or more pertinently, provide a well-defined
point to return to after the error message has been printed. Interrupts
must be enabled when a language starts.

Filing Systems
Filing Systems should respond to the following service calls:

&01 Allocation of static workspace in main RAM .

&02 Allocation of dynamic workspace in main RAM .

&03 Auto-boot and reading of explicit key and SHIFT key.
&04 For selection using *fsname and utilities (but not commands).
&09 Standard and possibly extended *HELP .

&0A Workspace claim call.

&0B NMI release.

&0C NMI claim.

&OF Vector claim.

&10 File closure warning.

&12 Initialise filing system.

&21 Allocation of static workspace in HAZEL .

&22 Allocation of dynamic workspace in HAZEL .

&23 Top of static workspace.

&24 Indicate dynamic workspace.

&25 Filing system information.

&26 Participate in *SHUT .

&27 Reset has occurred.

123

Master Operating System : A Dabhand Guide

On start-up a filing system should:

. Call OSFSC with A=6.

. Set up the necessary extended vectors (see below).

Issue service call &0F once only (cf NFS which claims twice!)

Find and restore any files left open when this filing system was
last shut down.

. Exit, ready to respond to commands.

o RN e

A filing system has ownership of :

&A0-&A7: Whilst it owns the NMI. Data here will be corrupted
if itis left while you wait to own the NMI again.

&A8-&AF: Workspace for filing system utility ' commands.

&B0-&BF: Scratch space. Cannot be preserved between calls.

&CO0-&CF: Preserved until you are deselected.

&D00-&D5F: NMI code area. Available on the same terms as
&AQ-&AT7.

Extended Vectors

A third way of accessing code in Sideways ROM is through extended
vectors. This involves claiming one of the standard system vectors,
and directing it to your own ROM based code. It isn’t as simple as just
loading the vector with the address in ROM, as this doesn’t give the
MOS a chance to manage the paging in and out of the various banks.
To point a standard Page 2 vector (see Appendix E for a list) to a Si-
deways ROM, this is what to do:

1. Calculate the vector number. This is:
(Vector address-&200) DIV 2
Call this n .

2. Set the vector to point to &FF00+3*n.

3. Read the extended vector address using OSBYTE &AS8. It is
returned in X(lo) and Y(hi). Call this e .

4. Set e+3*n to your ROM routine address (lo).
5. Set e+3*n+1 to your ROM routine address (hi).
6. Set e+3*n+2 to your ROM number.

Your ROM would normally do this as part of initialising, or reacting
to a ‘switch on’ star command. When this has been set up, you can sa-
fely assume that all calls which]MP(vector) will result in pointing

124

EREEEEEEEEEEy Sz

Sideways ROMs

to your ROM. Remember that BREAK resets all vectors, and selecting
a filing system tends to reset all vectors to do with files.

Note that extended vectors are not required when directing BRKV to
the current language. Just put the ROM address into BRKV.

Clock ROM (Master 128 only)

Listing 6.1 is an example of the sort of utility type program that can
be written in Sideways ROM format and then loaded into Sideways
RAM for use. When installed it will display a real time clock in the
corner of the screen. The time is generated from the CMOS real-time
clock fitted to the Master 128. Several of the new system calls are
needed to handle the display and update the clock. The code also
contains some of the new 65C02 opcodes supported by BASIC 4 assem-
bler. Enter the program, save it to disc, and then RUN it. To use the
clock, press CTRL-BREAK, then type *CLOCK ON.

How it works

The main job of updating the clock, which would in the past have re-
quired some interception of the interrupt vectors, is now controlled by
the new OSBYTE calls controlling ‘ROM semaphore’. These new calls
are OSBYTE &16 and &17. Acorn describe these calls as ‘increment’
and ‘decrement’ the ROM semaphore. The Electron and Master MOS
supports a system known as ROM polling, where the ROMs are of-
fered a service call (&15) every 10 ms.

This is very similar to an interrupt except that no vector claiming is
necessary, and all that a ROM has to do to get the poll call is issue
an OSBYTE &16. There are no parameters to the call. Conversely, an
OSBYTE &17 will cancel the polling without further action.

The reason that the terms ‘increment’ and ‘decrement’” are used,
rather than the more usual ‘on’ and ‘off’, is because more than one
ROM may claim polling. Therefore the polling is only turned off
when all ROMs relinquish their claims. OSBYTE &B3 tests the state
of the semaphore. This is used in the Clock ROM to avoid double in-
crementing, ie, if *CLOCK ON is typed when the clock is already on.

Not only is it nice to be freed from all the usual vector claiming, but
also, as anyone who has tried to put routines on interrupts will know,
the usual problems of sorting out the ESCAPE key, errors, timing, etc.,

125

Master Operating System : A Dabhand Guide

are removed because it’s all handled by the MOS. Of course you still
have to keep your routines quick unless you make them re-entrant.

The next new feature is the new service call to claim workspace in
the ‘hidden” RAM with service call &22 instead of the usual service
call &02. This is for a page of buffer memory to put the time data
from the OSWORD call. This buffer could have been at the end of the
code for use in Sideways RAM, but that wouldn’t work in a ROM.

The most important call for this application is the routine to read
the clock itself. This is done with an OSWORD call (&0E). The ROM
uses call 0 to read a string, and then a standard print routine to dis-
play the time only.

You will see a number of new 65C02 instructions in the program includ-
ing PHX, PHY, and INA (INC A) and DEA (DEC A). Note the use of OS-
BYTE &AD5 to read the cursor position rather than the more usual Os-
BYTE &86. This new call reads the output cursor, not the machine cur-
sor, so returns to the right place when COPYing information.

Listings
REM Clock ROM
REM (c) Dave Atherton 1987

REM Master 128 only
REM MOS: A Dabhand Guide

REM Requires 2 bytes of zp (&9E/&9F)
REM at all times. No other main memory
REM workspace required. 1 page hidden
REM RAM claimed.

88IBLEYNE

e
=
oo

zp=&9E

zpl=&9C

130 REM &9C 1s preserved
140 osnewl=&FFE7

150 oswrch=&FFEE

160 osbyte=&FFF4

170 osword=&FFF1

180 gsinit=&FFC2

190 DIM M% 1000

200 FOR pass=4 TO 7 STEP 3
210 P%=&8000

220 O%=M%

230 [OPT pass

240 EQUW &00

250 EQUB &00

260 JMP service

=
N
o

126

U L L

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
550

570
580

600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

Sideways ROMs

EQUB &82 \ Service ROM
EQUB c-&8000

EQUB &11

.title

EQUS “CLOCK ROM”
EQUB 0

.version

EQUS “1.10”

.c

EQUB 0

EQUS “(C)1987 Dave Atherton”
EQUB 0

.service

PHA

PHX

PHY \ Stack all registers
P #9

BEQ help

P #4

BEQ command

CMP #&£15

BEQ poll

P #&22

BNE chkwsi

JMP wspace

.chkwsi

CMP #&24

BNE out

DEY

PLA

PLX

PLA

RTS

.out \ Exit unclaimed
PLY

PLX

PLA

RTS

.zout \ Exit after action
PLY

PLX

PLA

LDA #0

RTS

. command

JMP command2

.help

JMP help2

.poll \ Execute clock routine
LDA #30

127

e

Master Operating System : A Dabhand Guide

128

780
730
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

JSR
LDA
DEA
STA
BNE
LDA
STA
LDA
JSR
PHX
LDA
STA
LDA
JSR
PHY
PHX
LDA
JSR
LDA
JSR
TYA

TAY
LDA
JSR

JSR
JSR
LDA
STA
LDX
LDY
LDA
JSR
LDA
JSR
LDX
LDY
JSR
LDA
JSR
PLA
JSR
PLA
JSR
PLA
STA
JMP

setzp
(zp) \ New 65C02
\ ditto
(zp) \ ditto
out \ Only action every 99 polls (every sec)
#99
(zp)
#&75
osbyte \ Get VDU status
\ Store it
#510
&D0 \ Put new status in
#165
osbyte \ Correctly return o/p cursor when split

\ Store xy - new 65C02
#135

osbyte

#31

oswrch

#7

mode, Y
oswrch
#0

oswrch
setzp

zp+1

#14 \ Read CMOS clock as string
osword

#l6

setzp

zp

zp+l

print

#31

oswrch

oswrch
oswrch

&D0 \ Restore old VDU status
out

.wspace
\ entry A=22, X=? Y=first page available

TYA

EEEEEEEEEEEEEEEES

MOS—1

1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

Sideways ROMs

STA &DFO, X

\ Exit with incremented Y
INY

PLX

PLX \ Throw away Y, pop X
PLA

RTS \ and get out

\

.setzp \ Set zp, zp+l to point to buffer + A
STA zp

LDX &F4

LDA &DF0,X \ Get workspace page
STA zp+l

RTS

\

.help2

JSR gsinit

LDA (&F2),Y

CMP #13

BNE helpend

JSR osnewl

IDX #title MOD 256
IDY #title DIV 256
JSR print

LDA #32

JSR oswrch

LDX #version MOD 256
LDY #version DIV 256
JSR print

JSR osnewl

.helpend

JMP out

\

.args \ If not followed by ON or OFF
JSR osnewl

LDX #argt MOD 256
LDY #argt DIV 256
JSR print

JSR osnewl

JMP zout

\

. command?2

LDX #0

.mloop

LDA (&F2),Y

AND #&DF

CMP table,X

BNE nomatch

INY

INX

BNE mloop

129

i

Master Operating System : A Dabhand Guide

130

1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1300
1310
1920
1930
1940
1950
1360
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300

.nomatch
LDA (&F2),Y
CMP #13
BEQ args
CMP #32

BEQ ok
.cout

JMP out
.loopc

INY

.ok

LDA (&F2),Y
CMP #32
BEQ loopc
CMP #13
BEQ args
AND #&DF
CMP #ASC “0”
BNE args
INY

LDA (&F2),Y
AND #&DF
CMP #ASC"F”
BEQ off

CMP #ASC”N”
BNE args
.on

JSR state
BNE on_now
LDA #22
JSR osbyte \ Inc semaphore
LDA #31

JSR setzp
LDA #&FF
STA (zp)
.on_now

JMP zout
.off

JSR state
BEQ off now
LDA #23
JSR osbyte \ Dec semaphore
LDA #31

JSR setzp
LDA #0

STA (zp) \ Clock off
.off now
JMP zout
.state

LDA #179
1DX #0

B e

2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750

LDY #255

JSR osbyte \ read state of semaphore
CPX #0

RTS

\

.print \ print string XY to a zero
LDA zpl

PHA

LDA zpl+l

PHA

STX zpl

STY zpl+l

LDY #0

.prloop

LDA (zpl),Y

oMP #32

BCC done

JSR oswrch

INY

BNE prloop

.done

PLA

STA zpl+l

PLA

STA zpl

RTS

.mode EQUB 72

EQUB 32

EQUB 12

EQUB 72

EQUB 32

EQUB 12

EQUB 32

EQUB 32

.table EQUS “CLOCK”

EQUB 255

.argt EQUS “Syntax : CLOCK <ON{|OFF>"
EQUB 0

.end

]

NEXT

S$=STRS$~M%

E$=STR$~ (end-&8000+M%)
REM Save in sideways RAM
OSCLI “SRWRITE “+S$+” “+ES$+” 8000 ¥~

Listing 6.1 CMOS Clock ROM.

Sideways ROMs

131

7 : The Tube

Introduction

The Tube is Acorn’s proprietary name for the 2 MHz interface fitted
to Models B,B+ and Master 128. The principles referred to here also
apply to the Electron Tube produced by Advanced Computer Products
Ltd. Its purpose is to allow another CPU and memory to operate
whilst the keyboard, screen and other Operating System input/out-
put (I/0) facilities are being controlled by the CPU on the main micro
(known as the I/0 or host processor). This enables computers to be
built which only require processor, memory and software, and not the
usual I/O considerations. The processor attached to the Tube is known
as the second-, language-, or co-processor. Co-processors developed to
date include a fast 65C102, Z80, 32016, 80186, and ARM. Third par-
ties have also produced 6502, Z80 and 68000 co-processors. Co-
processors for the Master 128 only, do not need to be boxed or powered
as they can be plugged directly into the main PCB. Adaptors have
been produced to interface Master 128 co-processors to the Model
B/B+.

In a two-processor system, the 32-bit addressing used by the MOS be-
comes relevant, with &FFFF0000 to &FFFFFFFF being the 1/0 pro-
cessor memory map, and &0 upwards being the co-processor memory
map. 32 bits offers 4Gb (Gigabytes—4,000 million bytes) of address
space, so it is unlikely that the co-processor would ever need the top
64k of address space. When a co-processor has control of the system,
the important Operating System calls are still available. On a 6502
co-processor, these are between &0000FF00 and &0000FFFF. On non-
6502 co-processors there is support for OSBYTE and OSWORD, but its
implementation depends on the processor in question. For example,
the Z80 uses HL to take the place of X and Y, but sticks to &FFF1 and
&FFF4 as entry points. In general, the support for OSRDCH,
OSWRCH and the file commands will be there, but not offered to the
user. This is because the other co-processors will usually have
another operating system (CP/M, MS-DOS, DOS+, 0S/9, Unix, CP/M
68K, Panos, etc.) which provide their own I/0 entry points.

132

B e e L

The Tube

Although the principles apply to all co-processors, detailed infor-
mation here is only supplied on the 6502 co-processor.

Tube Host Code and OS

The work of Tube data transfer is shared between two programs—the
Tube Host Code and the Tube Operating System. The Host Code,
which runs on the 1/0 processor, is the same irrespective of the co-
processor in use. It is supplied in the DFS ROM from version 1.20, all
versions of the 1770 DFS, NFS from version 3.60, all versions of ADFS,
and the Master MOS ROM. 1t is also supplied under licence in the
Watford Electronics 8271 DFS ROM from version 1.44.

When a co-processor is present, powered up, and software switched
in, the code is copied from the Sideways ROM to locations &400 to
&6FF. This area is otherwise unused as it is language workspace, and
any languages implemented will at this time be running on the other
processor. The Host Code is entered through three documented entry-
points, and takes parameters through A X,Y and P.

&400 Copy a language across the Tube.
&403 Copy the ESCAPE flag to Tube memory.
&406 Multi-purpose data transfer.

The Tube Operating System runs on the co-processor, and so a differ-

ent one, written in the appropriate machine code, exists for each. On
the 6502 system, this is in memory from &F800 to &FFFF, with loca-
tions &FEF8 to &FEFF acting as the Tube registers and copied out to

170. This code will run from a reset and so locations &FFFC/D have

&F800 written into them.

A program can find out which side of the Tube it is running on by issu-
ing an OSBYTE &82 call to read the higher order address which is
greater than &FF00 if it is running on the 1/0 side, or less if it is runn-
ing on the Tube. The program should not try to find out which side of
the Tube it is running on by issuing OSBYTE &EA.

&400 Copying a language across the Tube All

This call is used by the MOS, (as part of OSBYTE &8E) when the
Tube is active. It is not of any use to the user. Note that although
only the language part of a language/service ROM is needed on the
co-processor (indeed the same ROM may contain say Z80 language
code, and 6502 service code), and a language may only be 8k in length,

133

Master Operating System : A Dabhand Guide

all 16k is nevertheless transferred across the Tube, to the relocation
address specified. As the language jump must be coded in the target
co-processor’s machine code (see Chapter 6 for how it knows) pro-
blems may arise if a processor is used which cannot code an uncondi-
tional jump in three bytes!

On the Model B/B+ any event issued during a language transfer will
cause the computer to crash, so events should be disabled before call-
ing the transfer. This is not necessary on the Master Series.

&403 Copy the ESCAPE flag to Tube memory All

This call merely takes the contents of zero page location &FF on the
1/0 processor, and copies it to the co-processor, thus allowing the
Tube OS to recognise the ESCAPE event.

&406 Writing data across the Tube All

On a co-processor system high level applications such as languages,
and special disc operating systems such as MS-DOS will run on the co-
processor side—provided they have been written to do so of course.
The low-level 1/0 drivers such as ADFS sector read /write, and the
MOS will be on the I/0O processor. Also any utility programs written
in ROM are on the I/O processor and in 6502 machine code.

Obviously if a program running on one side of the Tube needs to access
memory on the same side, normal LDA /STA or equivalent is used.
Code running on the 1/0 processor when a co-processor is active must
be written in assembler. This code is often put in Sideways ROM for
many reasons to do with space, presence at power on, and elegance.

Accessing I/O memory from the co-processor

Programs running on any co-processor may use OSWORD &05 and &06
to read data from and write data to the 1/O processor. The call is
slow. If an OSBYTE is available as an alternative, eg OSBYTE &AOQ,
then use this instead. With OSWORD &05 and &06 a 32-bit 1/O
address is given at XY, and the byte is placed/read in XY+4. Note
that XY+2 and XY+3 will always be &FF.

There are other ways to pass data to the 1/O processor. The *CODE
(OSBYTE &88) and *LINE commands, and OSWORD calls with A
greater than &DF will all pass control to USERV, &200/&201 on the
1/0 processor. Service code should understand the format of *LINE,
OSWORD etc. This code must be placed in the 1/O processor, and

134

B e e e

The Tube

USERV must point to it. Of course OSBYTE, OSWORD, * and most
other MOS routines will pass calls with unknown values, for ex-
ample, OSWORD with A=&90, or *FX 55,2 to the Sideways ROMs.

Accessing co-processor memory

Access to the co-processor memory from the I/O processor can be very
useful. For example, you couldn’t implement a filing system without
it. Service ROMs also need the feature, especially those that deal
with languages such as BASIC toolkits.

A program resident on the 1/O processor wishing to read data from
the co-processor should procede as follows:

1. Issue a system call to claim the Tube.

2. Issue a system call advising read or write, number of bytes,
and co-processor start memory.

3. Perform a succession of read from or write to Data Register 3
to get the data, loading/storing it to/from 1/O memory.

4. On completion, issue a system call to release the Tube.

Claiming and releasing the Tube

If you claim the Tube, you are guaranteed that no other program (ie,
an interrupt-driven background task) will try to use it until you have
finished (unless they ignore protocols!) but the claim does not actu-
ally affect data transfer. To claim, you need a Tube identity. This is
a number in the range &00 to &3F. Some numbers have already been
allocated as follows:

Cassette Filing System
Disc Filing System

Econet low-level primitives
Network filing system
Advanced Disc Filing System
Teletext Filing System
Reserved

Videodisc Filing System
Sideways RAM utilities
Z80 second processor usage
10-14 Reserved

15 Allocated to a third party

VONAONGAPRWNR=O

135

Master Operating System : A Dabhand Guide

It is best that you start at the other end using say, identity &3E.
(&3F is used by the MOS) You should perform a JSR to &406, with A
containing &C0 plus the identity number, in this example A would
contain &FE as &C0+&3E= &FE. If you are releasing a commercial
product, it would be wise to contact Acorn to be allocated a number.
.claim

LDA #&FE\ Claim tube with id=&3E (other end)
JSR &406

Interrupts must be enabled during the claim. If the Carry flag is clear
on exit from the claim, it has failed and you should try to claim
again. Every claim (with one exception) needs a corresponding re-
lease. To release the Tube so that it is free for another user, you
should call &406, with A set to &80 plus the identity number.
.release

LDA #&BE\ &80+&3E
JSR &0406\ &3E no longer needs Tube

For both claim and release calls the values of X and Y are irrelevant.

Advising Tube OS of data transfer required

After claiming the Tube, the next step is to advise the Tube OS of the
size and direction of the data transfer required. This is done by call-

ing &406, with A containing a parameter between 0 and 7. This para-
meter defines the action to be taken as follows:

A=0 Read any number of bytes slowly (1 init. only required).

A=1 Write any number of bytes slowly (1 init. only required).

A=2 Read 2 bytes.

A=3 Write 2 bytes.

A=4 JMP to routine (no release call required).

A=5 Used by the system to inform the co-processor that the Tube
has been released.

A=6 Read 256 bytes.

A=7 Write 256 bytes.

The X and Y registers on entry point to a four-byte block in the /0
processor, which contains a second processor address to be used as the
first address for the data transfer. For multi-byte transfers, the Tube
OS will automatically increment this. Note that this call does not
actually transfer the bytes.

Immediately after calling this routine, you must wait for the Tube to
do its bit, by executing some null instructions. The time to wait is 24

136

gt e e

The Tube

s (48 cycles) for the ‘slow’ s.etup, 26 s (52 cycles) for the 2 byte se-
tup, and 19 ps (38 cycles) for the 256 byte setup. NOP will waste 1 ps.
JSR to an RTS will waste 6 us.

Writing data to/reading data from the Tube

Having setup the Tube to receive or send a known number of bytes the
rest of the procedure is very simple. This procedure applies to any co-
processor. The delays should still be observed even for very fast co-
processors such as the 80186 and ARM.

To Read:

If necessary, wait for a few microseconds—see below or
Test bit 7 of Status register 3 (&FEE4) until it is set.

Read the byte from Data Register 3 (&FEED5).

Store the byte in main memory, or process it immediately.
If 2 or 256 byte transfer repeat all steps once, or 255 times.

To Write:

Get the byte to be transferred from main memory or

If necessary, wait for a few microseconds—see below.
Test bit 6 of Status register 3 (&FEE4) until it is set.
Write the byte to Data Register 3 (&FEES5).

If 2 or 256 byte transfer repeat all steps once, or 255 times.

ghwN= O aprLNR

Delays

As well as the delays required after each setup call, there are also
delays required between each access to Tube memory. These do not ne-
cessarily mean that NOPs need to be performed—you may do some
useful processing as long as you don’t access &FEE4 and &FEES again
within the delay time specified. If you are polling the Status Re-
gister, you don’t need to bother about these delays.

Delay required between each read of &FEE4/&FEES (in ps)

Read: 1 byte-24 s 2bytes-26 us 256 bytes-19 us

Write: 1byte-24us 2bytes-13us 256 bytes-10 ps

In practice these figures are maxima, and lesser values may be exper-
imented with. This is because Tube Register 3 is a FIFO bulffer, ie,
First In First Out. If you access the Tube registers using OSBYTE &96

and &97, you can ignore all these delays - the OSBYTE processing
takes more than enough time!

137

Master Operating System : A Dabhand Guide

Transferring control to Co-Processor

A program running on the I/O processor can transfer control to a rou-
tine on the co-processor with a JMP &406 instruction. Note that this
is a 'JMP" not a 'JSR'—there is no return to the point after the I/0 pro-
gram made the call. The call is made to &406 with A=4 and XY
pointing to a four byte I/O memory block. The memory block contains
the address of the routine on the co-processor. Should you wish to
transfer control back again, the co-processor program must invoke an
I/0 routine. Current Tube Host Code and Tube Operating Systems do
not provide for any realistic concurrent processing except by using in-
terrupts. (The hardware is perfectly capable). Listing 7.1 provides
an example program which will transfer data across the Tube.

Listing 7.1.

REM Control Tube memory from I/0 side
REM {(c)Dave Atherton 1987

REM for B/B+/E/M

REM MOS : A Dabhand Guide

M%=&2F00

0srdch=&FFEQ

osasci=&FFE3

statR3=&FEE4

dataR3=&FEES

block=&70

buf2pP=&C200

opt=3

FOR pass=0 TO opt STEP opt

PH=M%

[OPT pass

\ Get a key, put it over the tube
\ clear registers, get it back &
\ then print it on screen as ASC
\

LDA #buf2p MOD 256

STA block

LDA #buf2p DIV 256

STA block+l

LDA #0

STA block+2

STA block+3

JSR claim

.loop

JSR osrdch \ get a key

STA block+l2 \ save it (at &7C)
320 1DA #1

BBIBEBEBRE

WRNNRNRNRORORNDN NN R E e
LEBRNSORORREbeaauawNEO
0000000000 dDoBbO0obOO0O000OO

138

LI U U U U U

330
340
350
360
370

390
400
410
420
430
440
450
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

760
770
780

The Tube
JSR setup \ initialises the write op.
.delay
BIT statR3
BVC delay \ wait for space in the FIFO Tube
LDA block+12
STA dataR3 \ Put byte into FIFO Tube
\ This generates an NMI on the 2P
\ whose 0S responds by storing the
\ byte, and incrementing the address
\ (‘buf2p’ as passed here on .setup)
\ for the next transfer, using nasty
\ self modifying code. (No line 460)
LDA #0
JSR setup
.delay2
BIT statR3
BPL delay2 \ wait for byte in FIFO to read
LDA dataR3 \ Get that byte
JSR osasci \ and display it.
CcMP #27
BNE loop
JSR release \ tell Tube system bye-bye.
RTS
.claim \ Set carry if claim successful
LDA #&FF
JSR &406
BCC claim
RTS
.setup

LDX #block MOD 256

LDY #block DIV 256

JSR &406

RTS

.release

LDA #&BF

JSR &406

RTS

.end

] NEXT

AS$="SAVE TubeKey “+STR$~M%+”+”+STRS$~ (end-M$%)
+”FFFF"+STR$~M%+"” FFFF”+STR$~M%
PRINT AS

OSCLI AS$

*RUN TubeKey

1

Listing 7.1 - Controlling Tube memory from the I/O side.

139

e
]

e

Master Operating System : A Dabhand Guide

Notes for 6502 Co-Processor programs

These are the areas to study if you want your programs to run on a
6502 second processor, or are trying to debug a program that won’t!

The following vectors and un-vectored system calls are not supported
by the 6502 co-processor, and should not be called directly, ie, by JMP
OSRDRM or JMP (VECTOR). They are all directed to a BRK in the
Tube OS, giving the error message ‘Bad’.

Unsupported calls

OSWRSC, OSRDSC, OSRDRM : These calls, relevant to paged areas

of the1/O memory map must only be issued by the 1/0O processor. The
way to deal with this is to install suitable routines on the 1/O pro-

cessor which pass data back to the co-processor.

OSVDU : Not needed, as OSWRCH is supported.

OSEVEN : Not appropriate as events cannot be generated by co-
processors. They can however be handled by co-processors.

GSINIT, GSREAD : These are really only of use to writers of ROM soft-
ware using one or more ** commands.

Vectors
USERV,VDUV KEYV, FSCV,UPTV,INSV,REMV ,NETV,CNPV

These are the vectors which don’t have associated page &FF system
calls, and so there is no need for co-processor support. All these vec-
tors are concerned with I/0O actions. They can be intercepted on the
1/0 processor to point to alternative I/O routines.

Other matters

1. Primary OSHWM is &800 not &E00, so BASIC supported by
machine code at &900 should either reset PAGE, or put the
machine code elsewhere, including the 1/O processor.

2. The character font is fully exploded, and can only be ac-
cessed legally. Thus you can’t rely on 224-255 and 128-159
being the same characters. Some programs start with one set
of numbers and indiscriminately move to another.

3. If the screen is driven by directly writing to memory, this
will not appear when the program is run on a co-processor.
This is particularly so with arcade games, a pity because
the extra speed would be nice.

140

B e e

The Tube

Other direct access to system RAM and ROM is likely to
flounder in a similar manner, ie, direct calls to the OS or BA-
SIC ROMs, trying to read bytes of SRAM, Operating System
variables or workspace , and so on—but not language work-
space. This should be moved to the co-processor, eg,

PRINT ?&18 * 256

typed on co-processor BASIC would still return the value of
PAGE (not OSHWM).

OSBYTE calls below 128 have lost the contents of Y before
they pass through BYTEV on the I/O processor. It is bad prac-
tice anyway to use Y in these calls as the MOS disregards it
anyway. The point is made because some third-party ROMs
may use such an OSBYTE and require a Y parameter.

Programs may run faster due to the faster processor.

Programs that rely on undocumented 6502 instructions may
fail on the tidier 65C02—see Chapter 3.

Stand-alone machine code programs can ignore the presence
of a Tube by having *LOAD and *EXEC addresses of
&FFFFxxxx. You must *RUN them directly from the FS.

Summary of Tube Registers
Status Register 1 - RISTAT - &FEEO

b7
b6
b5
b4
b3
b2
bl
b0

DA1 Data in Data Register 1

NF1 Not filled Data Register 1

P Set parasite reset active low

v Enable 2 byte FIFO operation of R3
M Enable parasite NMI from R3DATA
] Enable parasite IRQ from R4DATA

I Enable parasite IRQ from RIDATA

Q Enable host IRQ from R4DATA

Appears as &FEF8 on the 6502 Second Processor memory map.
Data Register 1 - RIDATA - &FEE1

This is used for OSWRCH , events and the ESCAPE flag. It should not
be accessed by the user. Writing to this register causes an IRQ (or
equivalent) on the co-processor. It appears at &FEF9 on the 6502 Sec-
ond Processor memory map.

141

Master Operating System : A Dabhand Guide

Status Register 2 - R2STAT - &FEE2

b7 DA2 Data in R2DATA
b6 NF2 Not filled R2DATA
b5-0 Don’t care
Appears as &FEFA on the 6502 Second Processor memory map.
Data Register 2 - R2DATA - &FEE3
This is used by all other MOS calls, and again should not be accessed
by the user. It appears at &FEFB on the 6502 Second Processor me-

mory map. In the protocol table below, the Tube protocols used by
each MOS function are listed.

Status Register 3 - R3STAT - &FEE4

b7 DA3 Data in R3DATA
b6 NF3 Not filled R3DATA
b5-0 Don’t care

Appears as &FEFC on the 6502 Second Processor memory map.
Data Register 3 - R3DATA - &FEES

User register for data transfer and 1/0 errors. Used by the calls docu-
mented in this chapter. Writing to or reading from this register
causes an NMI (or equivalent) on the co-processor. Appears as
&FEFD on the 6502 Second Processor memory map.

Status Register 4 - R4STAT - &FEE6

b7 DA4 Data in R4DATA
b6 NF4 Not filled R4ADATA
b5-0 Don’t care

Appears as &FEFE on the 6502 Second Processor memory map.
Data Register - R4DATA - &FEE7

This register is used for the control of data transfer. It should not be
accessed by the user. Writing to this register causes an IRQ (or equi-
valent) on the co-processor. It appears as &FEFF on the 6502 Second
Processor memory map.

Tube Protocols

Here are details of the transfers which take place between the 1/0
processor and co-processor, to service various system calls. Transfers

142

g Lt L

The Tube

are through Data Register 2 unless otherwise specified. This is real-
ly a rundown of how the MOS and Tube OS do their jobs. It is useful
for anyone trying to bypass the Tube OS. The letters C and H are
used to represent Co-processor and Host processor respectively. For
example, in the first call, OSRDCH, the user calls the routine with
JSR &FFEOQ, which causes the Tube OS to send a code (&00) to the
1/0 processor. In response to this, the MOS on the 1/O processor pro-
cesses the call, which in this instance reads the keyboard until a
key is pressed. The MOS, on the I/O side, then sends two bytes back
to the Tube, the minimum needed to transfer all the parameters. The
first byte contains the carry flag in bit 7 (the other bits are irrele-
vant), and the second byte contains the ASCII value of the key press.

OSRDCH

CtoH &00 Reason code

H processes MOS call

HtoC xx C flag in bit 7
HtoC xx Result from RDCH
OSCLI

CtoH &02 Reason code

CtoH xx..xx...... &0D Command line terminated with &0D
H processes MOS call

HtoC &7F Acknowledge

Short OSBYTE (<128)

CtoH &04 Reason code

CtoH xx X register contents

CtoH xx A register contents

H processes MOS call

HtoC xx X result

Long OSBYTE (>127)

CtoH &06 Reason code

CtoH xx X register

CtoH xx Y register

CtoH xx A register

H processes MOS call

HtoC xx C in bit 7 (not used by OSBYTE &9D)
HtoC xx Y result (not used by OSBYTE &9D)
HtoC xx Xresult (not used by OSBYTE &9D)

143

Master Operating System : A Dabhand Guide

OSWORD (except 0)

CtoH &08 Reason code

CtoH xx A register

CtoH xx Number of parameters

CtoH xx.xX......... Parameters

H processes MOS call

CtoH xx Return parameter count

HtoC xx.XX......... Return parameters

OSWORD 0

CtoH &0A Reason code

CtoH xx ASCII maximum

CtoH xx ASCIH minimum

CtoH xx Maximum length

CtoH &07 I/0 buffer most significant address
CtoH &00 I/0 buffer least significant address

(The MOS uses &FFFF0700)
H processes MOS call
HtoC &FF Escape flag or

HtoC &7F Acknowledge
HtoC xx..xx......&0D Line terminated by &0D

OSARGS

CtoH &0C Reason code

CtoH xx Y register

CtoH xx.xx.xx.xx 4 bytes of zero page pointed to by X
(high byte first, low byte last)

CtoH xx A register
H processes MOS call
HtoC xx Aresult

HtoC xx.xx.xx.xx 4 byte block, high byte first as above
OSBGET

CtoH &0E Reason code
CtoH xx Y register

H processes MOS call

HtoC xx Carry flag in bit 7
HtoC xx A result

144

I Ut e e L

OSBPUT

CtoH &10
CtoH xx

"CtoH xx

H processes MOS call
HtoC &7F

OSFIND

CtoH &12
CtoH xx

If A=0:

CtoH xx

H processes MOS call
HtoC &7F

If A<>0:

CtoH xx.xx....... &0D
H processes MOS call
Hto C xx

OSFILE

CtoH &14

CtoH xx....... xx,&00
CtoH XX..oeene.nn XX
CtoH xx

H processes MOS call
HtoC xx
Hto C xx............ XX

OSGBPB
CtoH &16

CtoH xx

H processes MOS call
HtoC xx........... XX
HtoC xx

HtoC xx

The Tube

Reason code
Y register
A register

Acknowledge

Reason code
A register

Y register

Acknowledge

Filename terminated with &0D

A result (file handle or 0)

Reason code

Filename terminated by zero

16 bytes : Bytes 3-18 of OSFILE parameter
block. High byte first, low byte last.

A register

A result
Bytes 3-18 of return block

Reason code

13 bytes : OSGBPB parameter block. High
byte first, low byte last.

A register

Return parameter block

Carry flag in bit 7
A result

145

Master Operating System : A Dabhand Guide

OSWRCH

CtoH xx A register (uses Data Register 1)
I/0 PROCESSOR BRK

HtoC &FF Generate IRQ and reason code
HtoC &00 BRK

HtoC xx Error code

HtoC xx..xx.....&00 Message terminated by zero

The first transfer of &FF is done through Data Register 4. The rest of
the protocol uses Data Register 2.

EVENT

HtoC &00 Generate IRQ and reason code
HtoC xx Y register

HtoC xx X register

HtoC xx A register

The transfers are done through Data Register 1.
ESCAPE FLAG CHANGE

HtoC xx b7=1: b6=New flag

The transfer is done through Data Register 1
TRANSFER START

HtoC xx Operation : (A on entry to &0406)
HtoC xx Number used to claim link
Hto C xx.xx.xx.xx 32 bit address (high byte first)
HtoC xx Value used to reset Tube ULA

The transfers are done through Data Register 4.

146

L e e

8 : Filing Systems &;;ﬁ
wu

=

There is no change to the MOS filing system interface on the Model
B+, and not much on the Master 128 and Compact. This chapter lists
only the extra filing system calls. If you are writing a filing system,
then you must support these calls, or document the fact that you
don’t.

OSFIND

No change. Note that a new random access file on ADFS needs 64k of
space, unlike the 16k needed under DFS.

OSGBPB/OSBPUT/OSBGET

No real change. Note that OSGBPB functions A=2 (Append bytes to
file) and A=4 (Read bytes from PTR) are supported by the cassette FS
on the Master 128 only. A=4 is also supported by the ROM filing
system (RFS) on the Master 128 and Compact.

OSARGS

There are some new entries here, so the whole call is freshly docu-
mented. The four-byte zero page memory block, is pointed to by X,
and may be on the 1/0 processor, or Second Processor.

Entry Result after call
X is preserved as is A except when specially set.

A=0:Y=0 Return current filing system number in A. There are
now some new filing system numbers. See Appendix
E for a list (B/B+/E/M/C).

A=0:Y=handle Read PTR of file into zero page memory pointed to
by X (B/B+/E/M/C).

A=1:Y=0 Return address of rest of “* command. Used by

disc/net based “* commands to read their parame-
ters (B/B+/E/M/C).

147

Master Operating System : A Dabhand Guide

A=1:Y=handle

A=2:Y=0

A=2:Y=handle

A=3:Y=0

A=3:Y=handle

OSFILE

Actions with A=

Write PTR of file from zero page memory pointed to
by X (B/B+/E/M/C).

Read filing system version number into A. On
DFS/ADFS this will always return 1, as it will on
ANFS, and NFS 3.60. It will however return 2 on NFS
3.34. It is not known entirely what use Acorn intend
this call to be put to (B/B+ with NFS/M/C).

Read EXT of file into zero page memory pointed to
by X. (B/B+/E/M/C)

Return library filing system number in A. See the ex-
tended list in Appendix E. If no library FS is selec-
ted, then &FF is returned, which is not the same as
having the current filing system equal to the library
filing system (achieved by typing *LIBFS without
any preceding filing system name), (M/C).

Write EXT of file from zero page memory pointed to
by X. Files extended by this command are filled
with zeros (M/C), Implemented on DFS after 2.25

0 to 6 and A=&FF are unchanged. There is a new call

with A=7. This creates a file without transferring any data. The
parameter block is set up in the same way as with A=0 (*SAVE).

Under DFS only the lock attribute was ever used. With ADFS (and
NFS) there are further file attributes set up in the parameter block:

XY+14 b0
bl
b2
b3
b4
b5
b6-7

XY+15

XY+16 b0-3
b4-7

XY+17

148

1=Can be read, 0=Cannot be read

1=Can be written to, 0=Cannot be written to
1=Has ‘E’ attribute, 0=File does not

1=Can’t be deleted, 0=Can be deleted

1=Can be read by other users, 0=It can't
1=Can be written to by other users, 0=It can’t
Not used

Date file was last written to (01-31)

Month file was last written to (01-12)
Year file was last written to minus 81 (ie, 1987=6)

Not used

IR EEEEEED

Filing Systems

Bit 2 of XY+14 only applies to ADFS, it is undefined in NFS. The dat-
stamping bytes XY+15 and XY+16 only apply to NFS, as do the at-
tributes in bits 4-7 of XY+14. To maintain compatibility between disc,
ADFS, and network, and future filing systems, you should set bits 4 to
7 of XY+14 to the same values as bits 0-3, and you should fill the
date bytes with zero. The ‘E’ attribute is a special feature implemen-
ted only in ADFS which makes a file ‘hidden’ so that it can only be
*RUN, and not *LOADed, or otherwise inspected. It is analagous to
the ‘lock’ bit implemented on the cassette filing system.

OSFSC

The OSFSC calls have been extended, and are also for some reason
omitted from the official Acorn Master Reference Guide. This call
has therefore been documented here in full.

OSFSC is an entry point for some miscellaneous filing system control
functions. It has no direct entry point, but is indirected through &21E,
and is therefore called with]MP (&21E). You should place

JHP(&21E)

at the end of your code, say under label .osfsc, and then,

JSR osfsc

As with many other calls, the number loaded into the accumulator
controls the function.

If you are writing a filing system, you must support all these:

A=0

A=l

A=2

A=3

A=

An *OPT command. X and Y contain the parameters.
The call passes through here last of all after going
through OSCLI and OSBYTE &8B.

An end-of-file (EOF) check. X=handle. On exit
X=&FF if EOF, X=0 if not EOF.

A */command (functionally equivalent to *RUN).
XY point to the string following the */.

An unrecognised " command, XY points to the first
letter of the command text.

A *RUN command, XY points to any following text.
A *CAT command. XY points to any following text.

149

Master Operating System : A Dabhand Guide

A=6 New filing system start. Close all your files and
preserve any data you need to preserve. Use OSBYTE
&77 to close any *SPOOL and *EXEC files.

A=7 Filing system handles. You must return in X the low-
est, and Y the highest handle possible.
A=8 The MOS has received a ** command.

Commands 0 to 8 are applicable to all Acorn machines. The following
FSCV commands are only applicable to the Master, following the in-
tegration of certain filing system specific commands into the MOS.

Master Series

A=9 A *EX command, XY points to any following text.
A=10 A *INFO command, XY points to any following text.
A=11 A "RUN command to the library filing system. You

should only respond to this if you are the library
FS. If so, respond as if the command were A=4.

Prohibited Filename Characters

Due to new features in ADFS, DFS and the MOS, it is recommended
that none of the following characters are used in filenames.

. full stop : colon

* star # hash

$ dollar & ampersand

@ at A ‘hat’, circumflex or up-arrow

“ quotes - minus

| double bar characters above ASCII 126
Using OSWORD &7F

OSWORD &7F is a general purpose command to access the 8271 disc
controller. When the 1770 controller was substituted, Acorn wrote
the new OSWORD &7F routine in such a way that it substituted the
equivalent 8271 codes. For example the code for format on an 8271
controller is &63. The code for write track, the nearest equivalent on
a 1770 is &20, but OSWORD &7F still accepts &63, and all other par-
ameters as if the controller present were an 8271. Here is a list of the
8271 command codes, those emulated by the 1770 DFS are marked

150

I

Filing Systems

with a *. A 1 marks those calls deleted in DFS 2.40. The format of
the command is given in Chapter 4.

Cmd Description No of Parameters

&35 Various setup commands

&40 Scan sector

&44 Scan deleted sector

&4A Write 128-byte sectors

&4B Write 256-byte or larger sectors *

&4E Write 128-byte deleted sectors

&4F Write 256-byte or larger deleted sectors *
&52 Read 128-byte sectors

&53 Read 256-byte or larger sectors *

&56 Read deleted sectors

&57 Read 256-byte or larger deleted sectors *
&5B Read Track ID *

&5E Verify 128-byte deleted sector

&5F Verify 256-byte or larger deleted sector
&63 Format track *

&69 Seek track *

&6C Read drive status

&7A Write special registers *

&7D Read special registers *

&EO0 Read track *}

&F0 Write track *f

R NNNORGWNWWNWNWNWN OO e

Temporary Filing Systems

A major addition to the Master Series MOS is the facility to use tem-
porary and library filing systems. These additions have meant consi-
derable changes to the system software and filing system protocols.
The following notes detail the operation of the filing system control
software on a Master Series micro. But firstly a brief glossary of
terms.

Current filing system : This is the default filing system. It will be
either the configured filing system, or a * command selected filing
system, for example ADFS may be the configured filing system but
DFS can become the current filing system by issuing the command,
*DISC or *FX 143,18,4. The current filing system is used in the absence
of a temporary filing system.

151

Master Operating System : A Dabhand Guide

Active filing system : This is the filing system which is currently se-
lected, and is the filing system which owns the absolute workspace,
and has claimed the filing system vectors.

Library filing system : This is an optional filing system which is
searched for transient, ie, disc based, commands not found on the cur-
rent or temporary filing systems.

Filing system handler : This is the low level operating system code
that sits between applications and the filing systems.

Transient command : A command located in secondary memory either
as a executable machine code file, or an EXECable text file with the
execution address suitably configured.

Page &DF

The RAM in HAZEL between &DF00 and &DFFF is used solely by the
filing system handler and commands associated to files. The details
are given below. Locations marked with a * are directly relevant to
temporary /library filing systems.

&DF00 Current filing system number *

&DFO01 Active filing system number *

&DF02 Library filing system number *

&DF03 Socket no. of ROM containing current filing system *

&DF04/5 Address of rest of command line for transient com-
mands.

&DF06 Ending at &DFC1 with up to 17 filing system infor-

mation blocks, terminated with a zero. Each block is
eleven bytes long and consists of the filing system
name padded with spaces to eight characters, the
minimum and maximum handles supported, and the
filing system number *

&DFC2 During *TYPE, LIST and PRINT if bit 7 is set, the GS
format print routine is disabled, thus giving pure
ASCII or *PRINT rather than *TYPE format), and
setting bit 6inhibits the printing of line numbers.
For *BUILD and APPEND bit 7 is set for APPEND,
clear during BUILD.

&DFC3/4 Line number (in BCD) for *BUILD,APPEND and LIST.

152

A e e A L

Filing Systems

&DFC5 Last character printed by *LIST etc. It is used to pre-
vent multiple CRLF.

&DFCé6 Temporary filing system flag *

&DFC7 A block ending at &DFD3 forms the OSGBPB block
for the destination channel during *MOVE.

&DFD4 Source handle for *"MOVE.

&DFD5 Destination handle for *MOVE.

&DFDé6 High byte of *MOVE buffer location.

&DFD7 Length of *MOVE buffer in pages.

&DFD8/9 Pointer to destination in command line (*MOVE).

&DFDA/B Copy of FSCV for active filing system *

&DFDC Copy of ACCCON made by *MOVE.

&DFDD If non-zero,*MOVE has changed ACCCON.

&DFDE From here to &DFFF is currently unused.

The Filing System Handler

The purpose of the filing system handler is to intercept all relevant
calls and select the required filing system. All these operations are
transparent to the filing systems themselves. In order to detect the
use of temporary filing systems the handler must intercept the seven
filing system entry points. For all but FSC this is done by inserting
code between the Page &FF call and the jump to the Page &2 vector.
This means that, for example, JMP &FFDA is no longer the same as
JMP (&214). As FSC has no main stream entry point it is intercepted
by changing FSCV to point the filing system handler, and copying the
old FSCV to locations &DFDA and &DFDB. This process is perfor-
med each time a filing system changes the vectors. The filing system
handler is also linked with the command line interpreter to allow
the temporary filing system name to precede the command, eg,

*{ OARD -ADFS-TEST
is the same as,
*_A0FS-LOARD TEST
The routines which intercept the FS vectors work as follows:

OSBPUT : The filing system appropriate to the file handle (in Y) is
selected and the call is passed to the filing system through BPUTV .

153

Master Operating System : A Dabhand Guide

If the handle does not match any filing systems, the current filing
system is selected.

OSBGET : As for OSBPUT.

OSGBPB : If the call has an acumulator value of 1 to 4 (byte trans-
fers) the filing system appropriate to the handle (contained in the
first byte of the control block) is selected. For all other calls the cur-
rent filing system is selected and the call is passed through GBPBV.

OSARGS : For calls in which Y<>0 (file related calls) the filing
system is selected according to the handle (in Y), otherwise if inva-
lid the current FS is selected. The call is then passed through ARGSV.

For calls with Y=0, and A<=3 the same procedure is followed:

Y=0, A=0: The current filing system number (obtained from &DF00)
is returned in A.

Y=0, A=1: The address of the rest of the command line is copied
from &DF04/5 to the zero page locations pointed to by X
and X+1. This address is padded to 32 bits by inserting a
high order address of &FFFF. The routine is then exited.

Y=0,A=2: The call is exited with A=1 to signal network software is
a version greater than NFS 3.60. In practice all Master
Series computers will be fitted with a version of ANFS.

Y=0,A=3: The routine exits with the Library filing system number
(from &DF02) in A.

NB : None of the calls with Y=0,A<=3 are passed to the actual fil-
ing system routines.

OSFIND : If A=0 for “close a file” the filing system is selected by the
handle in Y (or the current filing system is selected if handle
invalid), and the call is passed to FINDV. For A<>0 (open a file) the
name pointed to by XY is searched for a temporary filing system
name. Such a name must be preceded by a ‘~’, which must be the first
non space character in the name. If no temporary filing system name
is found either the current filing system is selected, or the active fil-
ing system if one was selected in a *command line, eg,

*_DiSC-DUMP TEST

will select DFS. If an unrecognized name is found an error is reported.
Before passing the call to FINDV the pointer in XY is updated to
point to after the temporary filing system name.

154

B A A

Filing Systems

OSFILE : The 18 byte parameter block pointed to by XY is copied to
&2ED to &2FE, this allows the original block to be resident in a Si-
deways ROM. The filing system is then switched in the same way as
for OSFIND with A<>0, using the name pointed to by Block, Block+1.
The updated name pointer is then written to the new block and FILEV
called with XY = &2ED. On exit from the routine the parameter
block copy with the exception of the name pointer is copied back to
the original block. The routine is then exited.

FSCV : The action taken depends on the opcode passed in A, and is

detailed below:

A=0 (*OPT X,Y):If a temporary filing system has already been set

A=1 (EOF #X):

A=2 (*/):

(eg, *-TAPE-OPT 1,2) the call is passed straight to
the filing systems FSCV. Otherwise, the current
filing system is selected and the call made.

Before making the call the filing system is
switched according to the handle in X. As is
normal if the handle is illegal the current filing
system is selected.

The address of the remainder of the command line
is calculated and stored in &DF04/5. The filing
system is then selected by name (as for OSFIND)
and the call made to the filing system. There
appears to be a bug in that if there are any spaces
between the / and the filing system name, or the
filing system name and the filename the pointer to
the rest of the command line will point to after
these, and not to after the filename.

A=3 (unrecognized command): See Library filing systems.

A=4 (*RUN):
A=5 (*CAT):

As for A=2.

The filing system is selected according to the text
pointed to by XY, and then XY is updated to point
to after the filing system name before the call to
the filing system is made.

A=6 (filing system change imminent): No action, passed straight

to filing system.

A=7 (Request for handle range): No action.

155

Master Operating System : A Dabhand Guide

A=8 (OS Command about to be processed): No action.
A=9 (*EX): As for A=5.
A=10 (*INFQ): As for A=5.
A=11 (Second unrecognised command): See below.
All other values for A result in a direct call to the old FSCV.

Library Filing Systems

On the Model B, when a * command was unclaimed by the MOS or
any Service ROMs (ie, the command was not recognised by any ROM)
it was passed through FSCV with A=3 and XY pointing to the rest of
the command line. The filing system would then check this against
its intrinsic command table, and if not found there would try to lo-
cate the file on the media and *RUN (or indirectly *EXEC) it. If the
file could not be found the filing system responded with a ‘Bad Com-
mand’ error. For RFS and CFS which have no intrinsic commands and
which are too slow to RUN a file the error was given as soon as the
FSC call was received.

The system used on the Master series is extended to allow unfound
commands to be passed to a second, Library, filing system. The new
system works as follows.

On receiving a call with A=3 through FSCV the filing system hand-
ler sets up the address of the rest of the command line (in &DF04/5)
and then calls the filing system’s FSCV with A=3. The FS then be-
haves as before, checking its intrinsic commands followed by the cur-
rent directory (CSD) and probably the library directory (CSL). How-
ever, if the command has still not been found, instead of giving an er-
ror the filing system jumps back through FSCV with A=11 with the
contents of Y and X unchanged. The filing system handler on receiv-
ing this call checks to see if a Library FS is selected. If not (&DF02 <
0) then a ‘Bad command’ error is given. If however a Library FS has
been set then this is selected and the call passed to this new filing
system through it’s FSCV. On receiving an FSC call with A=11 a fil-
ing system should attempt to RUN the file from its CSD and CSL, and
if it cannot find it should give a ‘Bad Command’ error.

After a hard reset or power on no library filing system is selected un-
til a command of the form *—fs name-LIBFS is executed. All the LIBFS
routine does is to copy the active filing system number from &DF01
(which will have already been set up by the CLI) to &DF02. *LIBFS

156

g

Filing Systems

with no name will select the current filing system as the Library fil-
ing system. There is no legal way other than CTRL-BREAK of return-
ing to the condition of no Library filing system.

Action on Service Calls

In order to keep track of what is going on the filing system handler
must look at certain ROM service calls. It does this by looking at the
conditions after the call has been issued. The actions are as follows:

A=&4 Unrecognized Command

If the call was not claimed no action is taken, otherwise the active
filing system number is read by an OSARGS call with A=0,Y=0 direct
to the filing system. This is stored in &DF01 as the active filing
system. Then the active filing system is made the current filing
system by copying &DF01 to &DF00. Finally &DFO03 is set to the
ROM number of the filing system by reading the ROM number of the
extended FILEV. All this is necessary because the command may have
brought about a permanent filing system change (eg, *DISC).

A=&F Indirections Changed

The value of FSCV is copied to &DFDA /B and FSCV is redirected into
the filing system handler. The active filing system number is then
setup as above. Finally, the active filing system is made current if no
current filing system exists. This can only occur during a reset sequence
and is detailed later. These actions are performed irrespective of
whether the service was claimed.

A=&12 Start Filing System

The action is exactly as for A=4. NB: When a temporary filing
system is started by the filing system handler a service call with
A=&12 is used. However, this call is made at a lower level so that
the system doesn’t think a permanent change has occurred and take
the actions given above.

Action on Reset

When a reset is issued (either power-on or BREAK), the following ac-
tions relevant to filing system are carried out:

157

Master Operating System : A Dabhand Guide

. The rest of command line pointer (&DF05/6) is pointed to
a carriage return in the MOS ROM.

. The filing system information table is set up by first writ-
ing in values for TAPE, CFS and ROM, and then issuing a
service with A=&25 to pick up the rest.

. The top bit of &DFO00 is set to signal no current filing
system.

. If it is a hard reset the top bit of &DF02 is set to signal no
LIBFS.

. An attempt is made to start up either the default filing

system (hard reset), or the previous filing system (soft
break). This is done by calling the ROM’s service entry
directly with A=3. If the ROM has no service entry, or
does not claim the service all the ROMs are scanned. If no-
body wants the call then the 1200 baud tape system is
started.

o When the filing system starts up it will issue service &F
at some point which combined with the “no current filing
system” state will correctly set up active and current filing
systems.

OSBYTE &8C and &8D

Because these two commands don’t issue a service call with A=&12
the filing system handler can’t alter the setting of the current filing
system . Therefore, once these commands have started up the filing
system they copy the active filing system number to the current filing
system, and set the current filing system ROM to 15.

OSBYTE &6D

This call is used when it is necessary to select the active filing
system as the current filing system. This might for example be necess-
ary if an application that needs to read further files is started on a
temporary filing system (eg, If a disc contains a database program
which must read a data file off the same disc, and the program is
started by *-DISC-DBASE from ADFS). The only action actually ta-
ken by this call is to copy the value from &DF01 to &DF00 (active
filing system to current filing system) and to set &DFO03 to the filing
system ROM number.

158

EEEE

Filing Systems

Deselecting Temporary Filing Systems

Obviously when a temporary filing system has been used it is necess-
ary to switch back to the current filing system. This is done in two
ways: firstly, when a * command is issued the current filing system is
reselected, and secondly, the filing system handler will always se-
lect the current filing system if no temporary filing system can be
found.

Master Series Programming Considerations

The new features have meant that the necessary protocols for legal
programming have changed. From an applications point of view it is
important that filing system calls are made via page &FF, and not
straight through the vectors. For a filing system to work correctly on
a Master series computer the following points should be adhered to:

¢ The filing system must be in ROM, and correctly extend the
appropriate vectors.

* Service calls 3,&12,&25 and &26 should be supported.

* The filing system should issue service call &0F once when
starting up.

¢ The FSC entries should be properly handled, especially
when A=3,9,100r 11.

¢ The filing system must keep files open when not selected,
and if possible should keep files open across break.

e The filing system must not directly alter or read any MOS
variables.

These considerations are in addition to those for filing systems on a
Model B.

Filing System information in this book

For further information about filing systems, see your computer User
Guide, and also:

Chapter 2 : *APPEND, *BUILD, *CAT, *CREATE, *CLOSE,
*DELETE, *DUMP, *EX, *EXEC, *INFO, *LIST, *LIBFS,
*LOAD, *MOVE, *OPT, *PRINT, *REMOVE, *ROM,
*RUN, *SAVE, *SHUT, *SPOOL, *SPOOLON, *TAPE,
*TYPE

159

Master Operating System : A Dabhand Guide

Chapter 4 :
Chapter 5 :

Chapter 6 :
Chapter 7 :

Chapter 9:

Appendix E:

160

OSBYTE and OSWORD calls connected with filing
systems.

*SRLOAD, *SRSAVE and equivalent OSBYTE/OS-
WORD calls.

Service calls to which filing systems must respond.

Transferring data across the Tube. Necessary for all
filing systems.

Filing system use of CMOS RAM /EEPROM.
Filing system numbers.

g e

W

9 : Non-Volatile RAM &;é
=

Introduction

The Master 128 and Compact contain a special RAM area in which
details of the start-up default values for things such as screen mode
are stored. These settings can be seen by issuing the command *STA-
TUS and can be changed at anytime using the *CONFIGURE command.

There are 50 bytes allocated to the Master 128 and 128 bytes (some-
times 256 bytes) on the Compact—neither appear on the memory
map and cannot be accessed using the indirection operators but can be
read by using OSBYTE &A1l and changed with OSBYTE &A2 (except
location 0), Chapter 4 contains full details.

On a Master 128 these bytes occupy volatile RAM and so a battery is
fitted to preserve the contents of the CMOS RAM when the machine
is not switched on. In the case of the Compact a special chip called
an EEPROM is used. This is written and erased by using an electrical
signal to semi-permanently change the chip contents. The EEPROM
does have a limited life though it is not likely to expire in the mac-
hine’s lifetime.

CMOS and EEPROM Memory Map

The first 40 bytes of both chips are used by the MOS and ROM firm-
ware. Bytes 41 to 50 are availble for user applications. The memory
map/byte usage by the MOS of the CMOS RAM (Master 128) and EE-
PROM (Compact) is detailed below:

Byte Function
0 Econet station number

1 File server station number
2 File server network number
3 Printer server station number
4 Printer server network number
MOS—K 161

Master Operating System : A Dabhand Guide

Byte

162

5

10

11

12
13
14
15

Function

b0-3 Default filing systemm ROM number
b4-7 Default language ROM number

ROM frugal bits ROMs 0-7 (b0 = ROM 0), 1=Inserted
ROM frugal bits ROMs 8-15 (b0 = ROM 8), 0=Unplugged

b0-2 All allocated to EDIT.
Screen mode (always shadow)
000=Mode 128
111=Mode 135
Modes 130 and 133 not supported instead:
010=Mode K’
101=Mode ‘T’
b3 0=TAB to columns, 1=TAB below word
b4 0=Overwrite mode, 1=Insert mode ;
b5 0=Don’t show returns, 1=Show carriage returns
b6-7 Spare (for EDIT)

Reserved for Modem Driver

b0-2 Default screen mode (0-7) (111 = Mode 7)
b3 Default shadow stat 0=Main, 1=Shadow screen
b4 O=Interlace on, 1=Interlace off
b5-7*TV setting
100=4 to 111=-1
000=0 to 011=3

b0-2 FDRIVE setting

b3 1=Shift Caps set (Only one of these three)

b4 1=No Caps set (should be set at any)

b5 1=Caps Lock set (one time.)

b6 0=No DIR loaded, 1=ADFS loads a DIR to start
b7 0=Floppy disc default, 1=Hard disc default

Keyboard auto-repeat delay
Keyboard auto-repeat rate
Printer ignore character (see also 15 bit 1)

b0 0=No Tube, 1=Tube

bl 0=Use ignore character, 1=No ignore character
b2-4 Default serial baud rate (000=75 bd 111=19200 bd)
b5-7 Default printer type (000=*FX5,0 100=*FX5,4)

g

Byte
16

17

18
19
20-29
30
31
32
33

35
36
37
38
39
3x

Non-Volatile RAM

Function

b0 Not used

bl 0=Loud Beep, 1=Quiet beep

b2 O=Internal Tube, 1=External Tube

b3 0=Scroll enabled, 1=Scroll protected
b4 0=No Boot, 1=Auto Boot

b5-6 Default serial format

b0 0=No Space, 1=Space allocated for Econet
b1-7 Spare (for ANFS)

Reserved for ANFS

Reserved for ANFS

Reserved by Acorn for new firmware/filing systems
Allocated to 3rd party suppliers —- ROM 0

Allocated to 3rd party suppliers - ROM 1

Allocated to 3rd party suppliers - ROM 2

Allocated to 3rd party suppliers - ROM 3
Allocated to 3rd party suppliers - ROM 4

Allocated to 3rd party suppliers — ROM 5

Allocated to 3rd party suppliers - ROM 6

Allocated to 3rd party suppliers - ROM 7 — see below
Allocated to 3rd party suppliers — ROM 8
‘Allocated to 3rd party suppliers - ROM 9

VIEW B3.0 Compact version - setup configuration

b0 0=No formatting, 1=Formatting

bl 0=No justification, 1=Justification

b2 0=Overwrite mode 1=Insert mode

b3-7 Spare (for VIEW)

(Byte used depends on RAM slot used—Compact default 7)

4049 Allocated to the user

Compact EEPROM

Bytes 50-127 do not exist on the Master CMOS RAM. On the Compact
EEPROM, they are spare bytes. Some Compact EEPROMs are 128-

163

Master Operating System : A Dabhand Guide

byte units, others are 256 bytes in which case bytes 128-255 are
available. OSBYTE &A1 with X=&FF determines the size of the EE-
PROM. On 256-byte EPROMs OSBYTE & A2 will not write to location
128. Locations 127 and 255 contain a signature byte to show that the
EEPROM is active.

OSBYTE Revisited

For ease of reference details of OSBYTE &A1 and OSBYTE & A2 are re-
produced here.

OSBYTE &A1 (161) Read CMOS RAM/EEPROM

This reads bytes from the 146818 CMOS chip on the Master 128, or
the EEPROM chip on the Compact. Fifty locations are readable on
the Master 128 (X=0 to X=49), and either 127 or 255 on the Compact.
A special call (X=255) for the Compact only determines which if any
type of EEPROM is present. Note that this call will not read the
clock registers of the 146818.

Entry: X=byte to be read
049 on Master 128
0-127 /254 on Compact
X=255 (Compact only)—Is EEPROM 128 or 256 byte ?

Exit: X=corrupt:Y=contents of RAM/EEPROM location

If X=255 on Compact:

Y=0 No EEPROM present

Y=&7F 128 byte EEPROM present
Y=&FF 256 byte EEPROM present

OSBYTE &A2 (162) Write CMOS RAM/EEPROM

This writes bytes to CMOS RAM or EEPROM. The address (see OS-
BYTE &ALl for range) is placed in X and the data in Y. Note that this
call will not allow you to change byte 0 on either machine, or bytes
127,128 or 255 on the Compact with large EEPROM. This is for Econet
security reasons.

Entry: X=address on CMOS RAM/EEPROM
Y=Byte to be written.
Exit: X=preserved:Y=corrupt.

164

B e e e a

Non-Volatile RAM

CMOS RAM Editor
Master 128 Only

Listing 9.1 provides a utility program that will allow you to alter
the data in the Master CMOS RAM chip. The program accesses not
only the 50 bytes of CMOS RAM data, but also the other 14 bytes of
clock data as well. This is because instead of using the MOS, direct
access is made to the 6522 slow data bus, to read all 64 bytes from the
chip. If you change the clock data you will alter the time.

The core of the program is the subroutine ‘cmos’ which reads or
writes data from the chip. With C=0, the routine will return in A
the contents of register X. With C=1, the routine will write Y to re-
gister X. The program will not work with the Compact EEPROM
which uses a different system of access. (A Compact version is provi-
ded on the Programs Disc. See Appendix K). Note also how OSBYTE
&9A is used to generate a double-width cursor.

To use the program, run it, and use the cursor keys to move round the
displayed data. To alter a byte, type hex digits (0-F) and the RAM
will be updated. Be careful, though, there is no way of returning to
the previous setting!

Listings 9.1.

10 REM CMOS RAM Editor

20 REM by D Atherton and D Spencer
0 REM (c) Dave Atherton 1987

40 REM for Master 128 only

% REM MOS : A Dabhand Guide
m .
0
80

osbyte=&FFF4
osword=&FFF1
0 osrdch=&FFEQ
100 oswrch=&FFEE
110 osnewl=&FFE7
120 osfind=&FFCE
130 osbput=&FFD4
140 control=&¢FE40
150 direction=&FE43
160 slowdatabus=&FE4F
170 DIM M% &300
180 ptr=&70
190 temp=&71
200 handle=&72

220 opt=2
230 FOR pass=0 TO opt STEP opt

165

Master Operating System : A Dabhand Guide A\

240 P%=M%

260 [OPT pass

270 1DY #0

280 .textl

290 LDA text,Y s
300 JSR oswrch

310 INY

320 CPY #(textend-text)

330 BNE textl S
340 LDA #154

350 1DX #203

360 JSR osbyte

370 JSR display S
380 LDA #0

390 STA ptr

400 JSR curset

410 LDA #4 -
420 1IDX #1

430 JSR osbyte

440 .key

450 JSR osrdch

460 BCS escape

470 AND #&7F

480 CMP #12

430 BCS keyl

500 Q4P #8

510 BCC keyl

520 \ A cursor key

540 LDA keystep-8,Y

560 ADC ptr

570 AND #&3F

580 STA ptr

590 TAX

600 JSR curset

610 .keyl

620 CMP #32

630 BNE key4

640 JSR display

650 .key4

660 CMP #ASC”0”

670 BCC key3 \ Under “0”
680 CMP #ASC “9”+1

690 BCS key3 \ Over “9”
700 AND #&0F

710 JSR rotate

720 .key3

730 AND #&DF

740 CQMP #ASC”A”

166

I L e e e

750
760
770
780

800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

BCC key2

CMP #ASC”F”+1
BCS key2

SEC

SBC #55

JSR rotate
.key?2

BRA key

.escape
LDA #&7E
JSR osbyte
LDA #4

LDX #0

JSR osbyte
LDX. #0

LDY #23
JMP tab

.newline

JSR osnewl
LDA #134

JSR oswrch
JSR oswrch
JSR oswrch
JSR oswrch

JSR hexout

LDA #135
JSR oswrch
JMP oswrch

.hexout

PHA

LSR A

LSR A

LSR A

LSR A

JSR hexl
PLA

.hexl

AND #&0F
CLC

ADC #ASC”0”
CMP #ASC”9”+1
BCC digit
ADC #6
.digit

JMP oswrch

Non-Volatile RAM

167

f
|
:

1

Master Operating System : A Dabhand Guide

168

1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760

.curset

\ Value in X, Set cursor
TXA \ Calculate Xpos

TAY

AND #7

STA temp

ASL A

ADC temp

ADC #8

TAX \ Store Xpos in X
TYA \ Original value
ISR A\ DIV 8

LSR A

LSR A

AND #7

cc

ADC #6

TAY \ Store Ypos in Y
INX \ Coz of funny cursor
JMP tab

.rotate \ enters with low nibble
STA temp

1LDX ptr
JSR cmos
ASL A
ASL A
ASL A
ASL A
AND #&FO

ADC temp

IDA #8
JSR oswrch

TAY

JSR hexout
IDX ptr
SEC

JSR cmos
LDA #8

JMP oswrch
.tab

1DA #31
JSR oswrch

Non-Volatile RAM

1770TXA

1780JSR oswrch

1790TYA

1800JMP oswrch

1810:

1820.display

1830LDX #0

1840LDY #5

1850JSR tab

1860LDX #0

1870.ploop

1880TXA

1890AND #7

1900BNE notst

1910JSR newline

1920.notst

1930CIC

1940JSR cmos

1950JSR hexout

19601DA #32

1970JSR oswrch

1980INX

1990CPX #64

2000BNE ploop

2010RTS

2020:

2030.cmos

2040\ This routine will read (C=0) or write (C=1) to any
2050\ register, clock and RAM in the 146818 clock chip.
2060\ Enter with X=register number, and value returned
2070\ in A, or for write X=reg, Y=value,C=l
2080\

2090\Note that this will NOT work with the Compact EEPROM
2100\

2110PHP

2120SEI \ Interrupts off

2130PHP

2140JSR select \ Select correct register
2150PLP

2160BCC read

2170:

2180LDA #&41 \ Take chip enable active and select write
2190STA control

2200LDA #&FF \ Set slow data bus for output
2210STA direction

2220LDA #&4A \ Take DS active

2230S8TA control

2240STY slowdatabus \ Write out byte
2250BRA exit

2260:

2270 .read

169

g

Master Operating System : A Dabhand Guide

170

2280LDA #&49 \ Take chip enable active and select read
2290STA control

2300STZ direction \ Set slow data bus for input
2310LDA #&42

2320STA control \ Take DS active

2330LDY slowdatabus \ Read data byte

2340:

2350.exit

2360LDA #&42 \ Put DS inactive again

2370STA control

2380LDA #2 \ Deactivate CE

2390STA control

2400STZ direction \ Make sure slowdatabus is all input
2410PLP

2420TYA \ Byte read in A (as well!}
2430RTS

2440:

2450.select

2460LDA #2 \ Deactivate CE and DS

2470STA control

2480LDA #&82 \ Take AS active

2490STA control

2500LDA #&FF \ Make slow data bus output
2510STA direction

2520STX slowdatabus \ Write out register address
2530LDA #&C2 \ Take CE active

2540S8TA control

2550LDA #&42 \ Deactivate AS leaving chip selected
2560STA control

2570RTS

2580:

2590.keystep

2600EQUB -1 \ Left

2610EQUB 1 \ Right

2620EQUB 8 \ Down

2630EQUB -8 \ Up

2640:

2650.text

2660EQUB 22

2670EQUB 135

2680EQUW &117 \ 23,1

2690EQUD 10

2700EQUD 0 \ Cursor off

2710EQUB 10

2720EQUS “ 146818 RTC and CMOS RAM Editor”
2730EQUB 31

2740EQUB 0

2750EQUB 5

2760.textend

2770. fname

2780EQUD 0

g

2790EQUD 0
2800.0sblk
2810EQUD 0
2820EQUD 0
2830}
2840NEXT
2850CALL M$%

Listing 9.1. The CMOS RAM Editor.

Non-Volatile RAM

171

10 : Differences

Introduction

In this chapter, the differences between the various models of BBC
Microcomputer are detailed. These are all researched from existing
documentation, but this has never before have been brought together
in this way. This list will help you make your software run on all
machines, and also, to see why existing commercial software will not
run on later models. The items covered include software and hard-
ware as follows:

BBC BASIC 1, 2, 3,4, 40, and 5.

Model B to Model B+.

Model B/B+ to Master 128.

Master 128 to Master Compact.
Master 128 MOS 3.20 to MOS 3.21.
ADFS 1.50 to ADFS 2.10.

DFS 0.90 to DFS 2.42 inclusive.

Master EDIT 1.00 to Master EDIT 1.16.

BBC BASIC

This is obviously a major feature of all BBC Micros. When the langu-
age starts up, the error printing routine points to the copyright string
rather than an error message, this contains the year of release. You
can check this by typing *BASIC, then REPORT. This is how versions
are identified. This section is concerned with the differences between
the various versions of BASIC.

BBC BASIC 1 - (C) 1981 Acorn

This is the original Model B BASIC and all published software
should work on this, the oldest BASIC. The rest of this section covers
the changes from BASIC 1.

1. For a full definition of BASIC as a language, see the original
Model B User Guide.

172

e

Differences

BBC BASIC 2 - (C) 1982 Acorn

This was released as an optional replacement for Model B owners,
and installed in new Model B’s from about 1983. This is the standard
and only version of BASIC in Model B+ and Electron machines. Here
are the differences from BASIC 1:

1. ELSE no longer leaves a byte on the hardware stack with

ON..GOTO.

INSTR no longer leaves the shorter string on the software stack.

EVAL now works completely, ie, EVAL("TIME").

PRINT -ABS 1 now works correctly.

New keyword, OSCLI, introduced using token &FF.

OPENIN changes function, a file is opened for read only. It is

assigned a new token, &8E.

A new keyword OPENUP takes old OPENIN function and token.

SIN, COS, LN and LOG re-coded for accuracy.

LN(2E-39) bug fixed.

9. Number printing now has 10 figures of precision.

10. @% now defaults to &90A instead of &AOQA.

11. Changing MODE now sets COUNT to zero.

12. INPUT “Prompt”; X now accepted. ‘7 is new and works like ’,’

13. Fatal errors introduced. If an errors ERR is 0, then ON ERROR is
ignored. STOP and No room are fatal errors.

14. New error (ERR=45) “Missing #“ arises when BGET and BPUT
are used without a #.

15. DIM space X where X < -1 gives an error ‘Bad DIM’.

16. The assembler now handles ASC”:” correctly.

17. The assembler now does displaced assembly controlled by O%
and OPT 4-7.

18. The assembler now contains pseudo-ops EQUB, EQUS, EQUD,
and EQUW.

19. There is now some garbage collection. This can be demonstrated
by:

SIR DN

® N

A$="":FOR 1%=0 TO 250:A$=A%+"K":NEXT

which is much more efficient. The situation is still imperfect if
you alternate two strings in this process.

BBC BASIC 3 —- (C) 1983 Acorn

Not often seen, this is the version of BASIC for the US version of the
BBC Micro. A few minor changes were introduced over BASIC 2. The

173

Master Operating System : A Dabhand Guide

HI-BASIC distributed with the 6502 second processor is a relocated
version of BASIC 3. The Changes:

1.

2.
3.
4.

The interpreter accepts COLOR for COLOUR. The detokeniser
(LIST) spells the word as COLOUR. An American version of the
BASIC is available which spells the word as COLOR. This is
the only difference between the two versions.

SAVE N$+X$ now works.

The use of ? and ! as formal parameters works correctly.
Random number generator re-coded for speed.

BBC BASIC 4 - (C) 1984 Acorn

This is the version of BASIC supplied on the Master 128. Differences
on the previous versions are:

N =

W

174

. Trailing spaces are stripped from lines entered in BASIC.

Leading spaces between line number and line text are now
discarded, if the LISTO option is 1 or greater.

LISTO now indents loops correctly.

LIST IF function now available. The syntax is:

LIST (<linenr,!linenr>) IF <text>
for example,

LISTIF label

LIST 200,300 (F label

Anything may be searched for. Tokens are always treated,
so with the program:

10 PRINT “TEHXT"
20 TEXT$="PRINT"

typing LISTIF PRINT or LIST IF P. will list line 10 only. The way
to find strings which are also tokens is to search for less

than the token string. In the example LISTIF PRIN only line 20
will be listed. LISTIF cannot find TIME, HIMEM, PAGE, LOMEM
and PTR# if they are operators, eg, LOMEM=&4000, (EXT#n=
will be found). It can however find them as operands, eg,
X=LOMEM.

RENUMBER and LIST are not now confused by byte &8D in
comments and listings.

. LIST will now print colour codes in REM statements which are

not surrounded by quotes.

L e

Differences

7. EXT#n=x now works to alter the size of a file. It uses OSARGS

A=3:Y=handle, thus the command will not work with filing
systems that don’t support this.

8. A pseudo-variable, TIMES, returns a 24-byte string identical to

that returned by *TIME. It can be assigned with either date or
time strings or both. See OSWORD &OF for details.

9. AUTO no longer prints a space after the line number.

10. General recursion is now allowed in FOR loops.

11. A new command EDIT, which has the same syntax as LIST,
including the IF options, passes sections or all of the program to
the “Edit” language. BASIC issues a command *EDIT mm,nn
where mm and nn are hex numbers. The numbers are zero page
hex addresses which contain the start addresses and end
addresses of the text.

12. A VDU list can be terminated with “|” which translates into
nine VDU (s, are enough to complete any VDU command.

For example:

upy 19,0,7;0;0;0;19,1;0;0;0;
can now be expressed as:
vy 19,0,71 19,1]

13. Random number generator changed again, for RND(1) and
RND(>1).

14. ON n PROCa,PROCbH,PROCc,PROCd ELSE PROCe:PROCf now
works.

15. RESTORE <Inr> where <Inr> is a line without DATA on it, but
with a comma is now not treated as a line of data.

16. Some formatting of assembly listings is now provided.

17. The assembler incorporates all 65C02/65C12 opcodes. INC A can
be represented as INA. DEC A can be represented as DEA. STZ can
be represented as CLR. This is for compatibility with MASM,
Acorn’s assembler in their 6502 Development System.

18. ASL ADDREG is now coded correctly, formerly coded as
ASL A \DDREG. This applies to other mnemonics which work

with the accumulator, ie, ASL, LSR, ROL, ROR, DEC, INC.

19.X,Y and A register references in assembler may now be in lower
case, ie, x, y and a.

20. EQUB, EQUS, EQUD, EQUW may also be in lower case.

175

Master Operating System : A Dabhand Guide

BBC BASIC 40 - (C) 1986 Acorn
This version of BASIC is fitted in the Master Compact.

1. The floating point code is totally recoded for improved speed
and accuracy.

2. MOD bug now fixed in BASIC 41, the 2nd version of BASIC 40

BBC BASIC 5 - (C) 1987 Acorn

This BASIC has only been coded so far on the ARM computer, Acorn’s
house-designer processor unit, as used in the Acorn Archimedes. This
is only a very brief run down of changes.

1. Introduction of WHILE .. ENDWHILE structure.

2. Introduction of CASE, WHEN ... OTHERWISE, ENDCASE

structure.

Block structured IF, like PASCAL.

Local errors, where ON ERROR does not wipe BASIC stack out.

Single step and enhanced tracing.

Improved PRINT accuracy, including non-scientific printing of

small numbers.

Function to return size of arrays PRINT DIM(A())

Passing arrays to procedures and functions (long overdue!).

Many new statements and extensions.

0. New operators <<n (32 bit ASL n times), >>n (32 bit ASR n
times), >>>n (32 bit LSR n times).

11. % is binary constant ie, Q%=%10101010.

12. | is address of floating point variable ie, z=x.

13. “+=" and “-=" offer arithmetic at assignment. X-=1 is the same

as X=X-1.

14.Many new commands such as HELP, LVAR etc.

15. LISTO greatly enhanced.

16. Integral ARM assembler.

17. Assembler has different convention for labels.

18. String storage completely rewritten.

19. Seven new error codes.

20. Ignores @% for reporting line numbers.

21. FOR statement recoded to avoid overflow.

22. Entry time syntax checking.

coRw

S0RN

176

g e L L

Differences

BBC Machines

The changes between successive releases of BBC micros in hardware
and software terms are detailed below. Details of changes from BA-
SIC versions can be found above.

Changes: Model B to Model B+

The BBC Micro Model B+, also known as the ‘Issue 10 board’ was a
small modification, even though the main PCB underwent a major re-
design mainly to take advantage of new cheaper components. The
end result is a machine that is broadly similar, however it did start
the issue of compatibility across a range of machines. These are the
differences:

Hardware

1. Additional 20k of ‘shadow’ screen memory, mapped at
&3000-&7FFF.

2. Additional 12k of ‘sideways’ memory mapped at
&8000-&AFFF.

3. 1770 disc interface replaces 8271 interface.

4. Bit 7 &FE30 controls 12k section (1=section active).

5. Bit 7 &FE34 controls 20k screen (1=shadow active).

Software

1. 1770 DFS is standard, replacing optional 8271 DFS.

2. Extra commands for DFS in 1770 version *FORMAT, *VERIFY,
*FREE, *MAP.

Extension to VDU 22 to select Modes 128-135 (Shadow modes).
*SHADOW command. See Chapter 2 for details.

New OSBYTE &72, identical to *SHADOW.

VDU status byte (&D0) bit 4 contains shadow state
(1=shadow).

OSBYTE &84,&85 always return &8000 is shadow active.
OSBYTE &87 does NOT return shadow mode number, just 0-7.
New OSBYTE &EF reads shadow state.

10. New system call OSWRSC at &FFB3.

11. OSWORD 5 and 6 can now be used to read shadow memory.

AR

0 N

MOS—L 1 77

Master Operating System : A Dabhand Guide

Changes: Models B/B+ to Master 128

The differences here are huge. Most of the book describes these, but
here is a brief, but nevertheless, complete list.

Hardware

1. Shadow screen as on B+.

Real time clock/CMOS RAM.

Numeric keypad fitted.

Extra 12k workspace RAM for MOS.

Four Sideways RAM banks fitted as standard.

Extra latches at b7 &FE30 and &FE34. See Chapter 5.
Cartridge sockets fitted, with internal IMHz bus which is
actually 2MHz.

8. Internal Modem port.

9. Internal Tube connector.

10.1770 disc interface replaces 8271.

Software

Nk

1. CLI environment supported—accessed by *GO.

2. Permanent machine settings, MODE, printer type etc. in CMOS

RAM. *CONFIGURE and *STATUS commands control this.

BASIC 4 supplied as standard.

Cassette Filing System now performs OSGBPB calls 1 & 3,

OSFSC 7, *EX (but not *INFO), and this responds to service

call &12.

ROM filing system responds to service call &12.

Temporary and library filing systems implemented.

Greatly extended graphics commands, similar to Acornsoft

GXR - Graphics eXtension ROM.

8. Extended text printing facilities.

9. Characters 128-255 defined in ROM.

10. Many new ‘¥ commands, see Chapter 2 for details.

11.Some new and extended MOS calls especially in the filing
system area.

12. Extended Sideways ROM service calls.

W

Now

178

et € e

__
(

Differences

Changes: Master 128 to Master Compact

The Master Compact is very similar to the Master 128. In general
most software written for the 128 will work on the Compact, and
most modifications to Model B software needed for the 128 are also
needed for the Compact. The main differences are improvements
made to the MOS and ADFS in the nine months between release of
the Master 128 (January 1986) and the Master Compact (September
1986).

Hardware

1. Standard issue 3.5” double-sided 80 track discs.

2. Optional supplied colour and mono monitors.

3. Missing items: Real Time Clock; Cassette filing system;
1 MHz bus; Cartridge Ports; Tube interface; A-D converter;
Colour Video; RS423 port; Internal Modem Slot.

4. EEPROM replaces CMOS RAM, bytes increased from 50 to 128 or
256, @ character now obtained on shift-0, @ key now becomes a
‘code’ key.

Software

1. OSWORDs &0E and &OF and *TIME and BASIC's TIME$ return a

fixed date/time “Fri,31 Dec 1999.23:59:59”, unless ANFS fitted

when OSWORD &14 is issued, see Chapter 4.

Configuration system lists items in alphabetical order.

New configure options SWITCHED, PROPORTIONAL, STICK

for joystick.

New OSBYTE call (&A1) to read EEPROM size.

New A-D code emulation, see Appendix H.

Extra cursor key option set by *FX4,3.

Code to support non-existent hardware such as Tube, IMHz bus

and Cassette removed.

8. SRAM code and graphics ellipse code now in the MOS area.

9. Bug in long thin ellipses fixed.

10. MOS sets sensible defaults in the absence of an EEPROM.

11.°T" option added to the *SRLOAD command.

12, *BUILD and *APPEND allow entry of top bit set characters.

13. Code key system. Press CTRL/SHIFT/CODE all together, then
release. The next key pressed will have 128 added to its ASCII
value. :

14. The first JSR BREAK call in the MOS to allow break indirection
has been changed to preserve ROMID (location &F4).

Nk Wb

179

Master Operating System : A Dabhand Guide

15. INKEY-256 now returns &F5. *FX0,1 now returns 5. *FX0,0 now
prints MOS instead of OS.

16. Key interpretations of OSBYTEs &DD to &E4 inclusive have
changed for X=2. This value now means return a NUL prior to a
predefined code. See Chapter 4 for full details.

17. User printer routines and extension vectored routines may now
page in HAZEL safely.

18.*ROMS now gives the message RAM instead of ROM for RAM
slots.

19. *TAPE and *MOTOR commands have no effect.

20.-CFS- and ~TAPE- filing system names are not supported.

21. DFS is not present in ROM, and thus neither are its commands,
it is however supplied on disc, in later releases of the Master
Compact Welcome Disc.

22.BASIC is internally altered, and improved. The new version is
known as BASIC &40.

23.*ROMS now ignore duplicate ROMs. Second image (counting
from &F) is displayed as ‘?” and &01 is placed in the table at
&2A1. Unplugged ROMs are still tested for duplication.

24.*REMOVE now fails if given two filenames, to avoid confusion
with *RENAME)

MOS, DFS and ADFS

This section details the changes made in various releases of the
MOS, DFS and ADFS.

Changes: Master 128 MOS 3.20 to MOS 3.21

1. *CONFIGURE and *STATUS recoded. They now list in
alphabetical order.

2. Reset (ie, startup) code has now been placed in the three pages
of ROM mapped at &FCO00 to &FEFF. Reset now includes reads
to the 1770 data and status registers (to clear spurious NMiIs)
and the Sideways RAM is cleared.

3. *BASIC routes through OSBYTE &8E.

4. Bugs concerned with CFS OSGBPB over the Tube, and long thin
ellipses fixed.

5. All the appropriate Compact features are included.

180

o {0 R O

|
{

Differences

Changes: ADFS 1.50 (M128) to ADFS 2.10 (Compact)

1.
2.

ol

® N o

*DRIVE is implemented for software compatibility.

*COPY and *COMPACT use shadow screen if available, and will
not then corrupt user workspace. If possible select a non-shadow
mode before using these commands. If shadow screen is not
available *COMPACT uses two pages of utilty workspace, and
one page of CLI buffer, and *COPY forces Mode 135, both to avoid
corrupting user data.

. *FORMAT, *VERIFY, and *BACKUP are implemented.

OSGBPB calls A=6 and A=7 return a zero byte after the CSD or
CSL name to be compatible with the ownership byte returned by
NFS/ANFS.

CLOSE#0 had a bug causing a ‘Channel’ error - now fixed.
General speed improvements.

Winchester driver code removed.

Skew value is now 4 (from 7 on old formatter).

Changes: DFS 0.90 to DFS 1.20 on 8271 (BBC B)

1.

1.
2.

3.

Many bugs removed, most notably when files were open on two
surfaces, it was easy to write back the catalogue to the wrong
surface

Network Filing System included in the ROM.

*BACKUP, *DESTROY and *ENABLE work differently. If
*ENABLE is used, then the commands work as before. If not,
then the command does not terminate, but offers a “Go (Y/N)?”
prompt.

Changes: DFS 1.20 to DFS 2.10 on 1770 (B+/M)

Controller code altered to drive BBC B+ 1770 controller.
*DRIVE now takes a second parameter fo allow, or cancel,
double-stepping, which allows you to read (but not write) 40-
track discs on 80-track drive. *DRIVE n 40 will set Drive n to
read 40-track discs - *DRIVE n 80 will cancel the facility, and
allow reading of 80-track discs again. There is no restriction on
mixing tracks on different sides of the same disc.

The keyboard link settings are now:

Step Time éms 12ms 20ms 30ms(default)
Link 3 0 1 0 1
Link 4 0 0 1 1

181

Master Operating System : A Dabhand Guide

These can be set from the keyboard, if a DIL switch is fitted, or
by using OSBYTE &FF from the keyboard or in software.

4. The ‘Drive fault’ error (&C5) has been deleted.

5. The following new commands are included in the ROM *CLOSE,
*EX, *FORM,*FREE, *MAP, *ROMS, *VERIFY.
See Chapter 2 for details of these commands.

1770 DFS Versions

Several versions of this DFS have been released each with minor
changes. Version number and changes to it from the previous list are
as follows:

2.00
2.10

2.20
2.24

225

2.26

2.28

2.29
2.40

182

Early Model B/B+ versions (FDC at &FE84-&87)

First official B/B+ release.

Includes SRAM commands, which cause *CLOSE bug.
Only version with double density (at OSWORD level).
First Master version (FDC at &FE28-&FE2B).

*HELP SRAM sends only one linefeed after each line.
OSFILE &FF (*LOAD) returns A=1 if found .

*SAVE longer than 64k works.

*CLOSE bug fixed.

EXT#X=number now works.

LIBFS deals with * commands correctly.

Now responds to ROM service call &25 and &26.

All four head speeds selectable (FDRIVE).

OSGBPB recoded for speed.

Last BBC B/B+ version.

Improvement in reset characteristics.

Pressing BREAK, after changing discs while files open, now
correctly causes ‘Disc changed’.

OSGBPB Tube problem fixed (only appeared in 2.26).
SRAM code is now in the MOS.

OSWORD &7F with A=&E0/&F0 (1770 read /write track)
deleted.

Only one private page claimed on service &22.

Some ADFS code now in end of ROM 9.

Extra 1770 reads at reset to clear spurious NMIs.

g e e e

Differences

EDIT
EDIT is supplied as part of the Mega-bit ROM on the Master 128.

Changes: Master EDIT 1.00 to HI-EDIT 1.16

AR

®N

9.

10.
11.

12.

Translated enhanced characters in formatter work correctly.
Display update works correctly.

Status display shows TAB state.

New mode GETs instead of INPUTs.

Shift-f5 ‘D’ message amended.

New file cannot be loaded without confirmation, unless old file
is unmodified.

Carriage returns now displayed as inverse $, not inverse M.
Wipe to end-of-line uses clear text block instead of clear
window. This no longer affects the cursor position in cursor
editing mode.

Insert file no longer changes the current filename.

“*EDL.FRED” & “*EDIT FRED” now allowed. Previously
exactly one space was needed before filename.

Version number displayed on descriptive page is now the same
as that in the ROM header.

Binary version number is now 2 and copyright year is 1986.

183

Appendices &g:ﬁ‘

= |
A: Complete OSBYTE List 185
B: Complete OSWORD List 191
C: Complete VDU List 193
D: Memory Map 198
E: OS Call Item List 213
F: Key Numbers 217
G: PCB Links 223
H: Cartridge Ports 230
Ik Compact Analogue Emulator 234
J: Connector Pinouts 241
K: The Programs Disc 245
L: Guide to Dabhand Guides 247

184

g e L

A : Complete OSBYTE List

These calls perform a variety of MOS functions. They are used by
setting the accumulator to the relevant number, and then calling
&FFF4. X and Y are loaded with any parameters required. Calls are
marked to show which machines they are implemented on. The
numbers in brackets refer to their *FX equivalent. Chapter 4 contains
full details on all the new commands.

Number Action Machines

&00 (0) Print Operating System version

&01 (1) User OSBYTE call, read/write &281

&02 (2) Select input stream

&03 (3) Select output stream

&04 (4) Select cursor state

&05 (5) Select printer destination

&06 (6) Set character ignored by printer

&07 (7) Set RS423 receive baud rate

&08 (8) Set RS423 transmit baud rate

&09 (9) Set flash duration mark state

&0A (10) Set flash duration space state

&0B (11) Set keyboard auto-repeat delay

&0C (12) Set keyboard auto-repeat rate

&0D (13) Disable events

&0E (14) Enableevents

&O0F (15 Flush buffers

&10 (16) Select ADC channels to be sampled

&11 (17) Force an ADC conversion

&12 (18) Clear function key definitions

&13 (19) Wait for vertical sync

&14 (20) Explode soft character RAM allocation
Restore default character set

&15 (21) Flush specific buffer

&16 (22) Increment polling flag

&17 (23) Decrement polling flag

&18 (24) Select external sound

All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
B/B+/E
M/C
All
E/M/C
E/M/C
E

185

Master Operating System : A Dabhand Guide

&19
&1A
&44
&45
&46
&6B
&6C
&6D
&6E
&6F
&70
&71
&72
&73
&74
&75
&76
&77
&78
&79
&7A
&7B
&7C
&7D
&7E
&7F
&80
&81
&82
&83
&84
&85
&86
&87
&88

186

(25)

(26)

(68)

(69)

(70)

(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)

Restore a group of font definitions
26-67 unused

Test sideways RAM presence

Test pseudo/absolute SWR usage
70-106 unused

Select internal/external 1 MHz bus
Write usage of main/shadow memory

Make temporary filing system permanent

Unused

Unused - Aries B20 board

Select memory for VDU code

Select memory for display

Write usage of shadow memory
Blank or restore palette

Reset internal sound system

Read VDU status

Reflect keyboard status in LEDs
Close any SPOOL /EXEC files

Write current keys pressed information
Perform keyboard scan

Perform keyboard scan from &10
Printer driver going dormant

Clear ESCAPE condition

Set ESCAPE condition

Acknowledge detection of ESCAPE
Check for EOF on open file

Read ADC channel/Get buffer status
Read key with time limit

Read machine high order address
Read OSHWM (start of user RAM)
Read HIMEM (end of user RAM)
Read HIMEM for a given mode

Read cursor position (POS and VPOS)
Read character at input cursor position
Perform *CODE

M/C

B+/M/C
B+/M/C

M/C
M/C
M/C

B
M/C
M/C

B+/M/C

E

E

All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All

g g Lt L e L e e L e L

-
{

&89
&8A
&8B
&8C
&8D
&8E
&8F
&90
&91
&92
&93
&94
&95
&96
&97
&98
&99
&9A
&9B
&9C
&9D
&9E
&9F
&AQ
&A1
&A2
&A3
&A4
&AS5
&A6
&A7
&A8
&A9
&AA
&AB

(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)

Appendix A

Perform *MOTOR B/B+/E/M
Insert value into buffer All
Perform *OPT All
Perform *TAPE B/B+/E/M
Perform *ROM All
Enter language ROM All
Issue paged ROM service request All
Perform *TV All
Get character from buffer All
Read from FRED, 1IMHz bus All
Write to FRED, 1MHz bus All
Read from JIM, 1 MHz bus All
Write to JIM, 1 MHz bus All
Read from SHEILA, mapped I/O All
Write to SHEILA, mapped 1/0O All
Examine buffer status All
Insert character into input buffer All
Write to video ULA control register and copy All
Wrrite to video ULA palette register and copy All
Read /Write (R/W) 6850 control reg. and copy ~ All
"Fast" Tube BPUT All
Read from speech processor B/B+
Write to speech processor B/B+
Read VDU variable base address All
Read CMOS RAM/EEPROM M/C
Write CMOS RAM/EEPROM M/C
Reserved for third parties

Check if data is suitable for I/O proc M/C
Read output cursor position M/C
Get start address of OS variables (lo) All
Get start address of OS variables (hi) All
Get address of ROM pointer table (lo) All
Get address of ROM pointer table (hi) All
Get address of ROM information table (lo) All
Get address of ROM information table (hi) All

187

Master Operating System : A Dabhand Guide

&AC
&AD
&AE
&AF
&B0
&B1
&B2
&B3

&B4
&B5
&B6
&B7
&B8
&B9
&BA
&BB
&BC
&BD
&BE

&BF
&CO
&C1
&C2
&C5
&C4
&C5
&C6
&C7
&C8
&C9
&CA
&CB
&CC

188

(172) Get address of key translation table (lo) All
(173) Get address of key translation table (hi) All
(174) Get start address of VDU variables (10) All
(175) Get start address of VDU variables (hi) All
(176) R/W CFS timeout counter B/B+/E/M
(177) R/W input source All
(178) R/W keyboard semaphore All
(179) R/W primary OSHWM B/B+/E

Read keyboard semaphore M/C
(180) R/W current OSHWM All
(181) R/W RS423 mode All
(182) Read character definition explosion state All
(183) R/W cassette/ROM filing system switch All
(184) Read RAM copy of video ULA control register All
(185) Read RAM copy of video ULA palette register All
(186) R/W ROM number active at last BRK (error) All
(187) R/W number of ROM socket containing BASIC ~ All
(188) Read current ADC channel All
(189) R/W maximum ADC channel number All
(190) Read ADC conversion type B/B+/E/M

Write stick sensitivity C
(191) R/W RS423 use flag All
(192) Read RS423 control flag All
(193) R/W flash counter All
(194) R/W mark period count All
(195) R/W space period count All
(196) R/W keyboard auto-repeat delay All
(197) R/W keyboard auto-repeat period All
(198) R/W *EXEC file handle All
(199) R/W *SPOOL file handle All
(200) R/W ESCAPE,BREAK effect All
(201) R/W Econet keyboard disable All
(202) R/W keyboard status byte All
(203) R/W RS423 handshake extent All
(204) R/W RS423 input suppression flag All

B U

&CD
&CE
&CF
&DO
&D1
&D2
&D3
&D4
&D5
&D6
&D7
&D8
&D9
&DA
&DB
&DC
&DD
&DE
&DF
&EOQ
&E1
&E2
&E3
&E4
&ES5
&E6
&E7
&ES8
&E9
&EA
&EB
&EC
&ED
&EE
&EF

(205)
(206)
(207)
(208)
(209)
(210)
(211)
(212)
(213)
(214)
(215)
(216)
(217)
(218)
(219)
(220)
(221)
(222)
(223)
(224)
(225)
(226)
(227)
(228)
(229)
(230)
(231)
(232)
(233)
(234)
(235)
(236)
(237)
(238)
(239)

Appendix A
R/W cassette/RS423 selection flag B/B+/E/M
R/W Econet OS call interception status All
R/W Econet OSRDCH interception status All
R/W Econet OSWRCH interception status All
R/W speech suppression status B/B+
R/W sound suppression status All
R/W BELL channel All
R/W BELL envelope number/amplitude All
R/W BELL frequency All
R/W BELL duration All
R/W startup message and !BOOT options All
R/W length of soft key string All
R/W number of lines printed since last page All
R/W number of items in VDU queue All
R/W TAB character value All
R/W ESCAPE character value All
R/W character &CO0 to &CF status All
R/W character &DO0 to &DF status All
R/W character &EO to &EF status All
R/W character &F0 to &FF status All
R/W function key status All
R/W SHIFT+function key status All
R/W CTRL+function key status All
R/W CTRL+SHIFT+function key status All
R/W ESCAPE key status All
R/W flags determining ESCAPE effects All
R/W IRQ bit mask for user 6522 All
R/W IRQ bit mask for 6850 All
R/W IRQ bit mask for system 6522 All
Read Tube flag All
Test for speech processor B/B+
R/W wrrite oufput status as set by *FX3 All
R/W cursor status as set by *FX4 All
Set base for numeric keypad M/C
R/W shadow state (*FX114 setting) B+/M/C
189

et

Master Operating System : A Dabhand Guide

&FO0
&F1
&F2
&F3
&F4
&F5
&F6
&F7
&F8
&F9
&FA
&FB
&FC
&FD
&FE

&FF

190

(240)
(241)
(242)
(243)
(244)
(245)
(246)
(247)
(248)
(249)
(250)
(251)
(252)
(253)
(254)

(255)

Read country flag (UK or USA MOS)
R/W location &281 (*FX1 setting)
Read RAM copy of serial processor ULA
R/W timer switch state

R/W soft key consistency flag

R/W *EX5 (printer) setting

R/W *FX6 (ignore) setting

R/W 1st byte of BREAK intercept code
R/W 2nd byte of BREAK intercept code
R/W 3rd byte of BREAK intercept code
Read *FX112 setting

Read *FX113 setting

R/W current language ROM number
R/W last BREAK type

R/W available RAM (16 or 32K)
Enable/disable SHIFT on numeric pad

R/W start up options

E/M/C
All
All
All
All
All
All
All
All
All

M/C
M/C
All

All
B/B+/E
M/C
All

TR Ui UL e U U e e

B : Complete OSWORD List

OSWORD is a MOS entry point at &FFF1. All calls are made by sett-
ing X (lo) and Y (hi) to point to a parameter block in memory, and
setting the accumulator to the call number. The parameter block is
set up first, and then a call to &FFF1 is made. Chapter 4 contains
more details.

&00 (0) Read a input line to memory All
&01 (1) Read system clock (as in BASIC TIME) All
&02 (2) Write system clock All
&03 (3) Read interval timer All
&04 (4) Write interval timer All
&05 (5) Read byte of 1/O processor memory All
&06 (6) Write byte to I/O processor memory All
&07 (7) Generate a sound (as in BASIC SOUND) All
&08 (8) Define an envelope (BASIC ENVELOPE) All
&09 (9) Read pixel colour (as in BASIC POINT) All
&0A (10) Read a character definition All
&0B (11) Read the VDU palette All
&0C (12) Write the VDU palette All
&0D (13) Read current/previous graphics cursor position All
&O0E (14) Read CMOS clock (3 possible calls) M/C
&OF (15) Write CMOS clock (3 possible calls) M/C
&10 (16) Econet transmit NFS/ANFS
&11 (17) Econet receive NFS/ANFS
&12 (18) Econet reading of argument block NFS/ANFS
&13 (19) Read/write station information NFS/ANFS
&14 (20) Communicate with fileserver etc. NFS/ANFS
&28 (40) Prisma Graphics processor 3P ROM
&29 (41) Prisma Graphics processor 3P ROM
&2A (42) Prisma Graphics processor 3P ROM
&2B (43) Prisma Graphics processor 3P ROM
&2C (44) Prisma Graphics processor 3P ROM
&2D (45) Prisma Graphics processor 3P ROM
&2E (46) Prisma Graphics processor 3P ROM
191

Master Operating System : A Dabhand Guide

&2F (47) Prisma Graphics processor 3P ROM
&30 (48) Prisma Graphics processor 3P ROM
&31 (49) Prisma Graphics processor 3P ROM
&40 (64) AMX Mouse/Master Trackerball 3P ROM
&41 (65) AMX Mouse/Master Trackerball 3P ROM
&42 (66) Memory transfer to/from SRAM B+/M/C
&43 (67) Load/save to Sideways RAM B+/M/C
&44 (68) AMX Mouse support 3P ROM
&45 (69) Aries B32 move/swap memory 3P ROM
&46 (70) Allocated to BBC Soft 3P ROM
&47 (71) Available for third parties, to ... 3P ROM
&5E (94) Available for third parties 3P ROM
&5F (95) BBC Soft ‘Monitor’ 3P ROM
&60 (96) Read Master Sequence number and status byte VFS
&62 (98) Access the LVROM disc controller VFS
&63 (99) Read last VFS error information VFS
&64 (100) Read current F-code VEFS
&70 (112) Read Master sequence no and status byte ADFS
&71 (113) Read free space ADFS
&72 (114) Read/write sectors ADFS
&73 (115) Read last error information ADFS
&7A (122) Teletext commands 3P ROM
&7B (123) Modem commands 3P ROM
&7D (125) Read Master Sequence number DFS
&7E (126) Read disc size DFS
&7F (127) Issue command to 8271 controller DFS
&80 (128) Miscellaneous IEEE commands IEEEFS
&82 (130) Cambridge Ring r/w parameters C.Ring
&83 (131) Cambridge Ring data transmission C.Ring
&84 (132) Cambridge Ring ring polling C.Ring
&90 (144) Network Service Interface Network
& A0 (160) Isolated word recogniser

&FE (254) Z80 SP Disc Read Z80 Host
&FF (255) Z80 Data Transfer Z80 Host

192

g e L

C : Complete VDU Command List

The BBC Micro VDU drivers control not only text and graphics out-
put, but also the alteration of all text and graphics attributes (except
video ULA direct reprogramming). For example, a screen mode may
be selected, colours defined, a fill pattern determined, and then text
and flood filled graphics may be produced without any other system
calls. To drive the VDU all you do is load the accumulator with a
value, and perform a JSR to &FFEE. The control codes have accumu-
lator values between 0 and 31, and some take additional parameters
so if a call with A=129 followed a call with A=22 it would mean
that screen mode 129 was required, not that ASCII character 129 is to
be printed. The number of parameters required is indicated, as are
Master-only commands. Note that all graphics plotting is done by
adding parameters to VDU 25, and that many of the more esoteric
commands are done with VDU 23,

VDU Action performed No of Parameters Machine
0 Do nothing 0 All
1 Send next character to printer 1 All
2 Send subsequent codes to printer also (8-13and 0 All

32-126 only, unless done with VDU 1)

3 Stop all printer output 0 All
4 Disable ‘text at graphics cursor’ 0 All
5 Enable ‘text at graphics cursor’ 0 All
6 Cancel any driver disability from VDU 21 0 All
7 Sound a beep 0 All
8 Move cursor back one space 0 All
9 Move cursor forward one space 0 All
10 Move cursor down one line 0 All
11 Move cursor up one line 0 All
12 Clear screen 0 All
13 Carriage return 0 All
14 Enable ‘paged mode’ output 0 All
15 Disable ‘paged mode’ output 0 All
16 Clear graphics window (CLG) 0 All
17 Define text colour (COLOUR) 1 All
18 Define graphics colour (GCOL) 2 All
MOS—M 193

Master Operating System : A Dabhand Guide

19 Define logical colour 5 All
20 Restore default settings of VDU 17 / 19 0 All
21 Disable VDU drivers 0 All
22 Select screen mode 1 All
23 Various functions - see below 9 All
24 Set graphics window 8 All
25 Various graphics plotting commands - see below 5 All
26 Restore default text and graphic windows 0 All
27 Do nothing 0 All
28 Define text window 4 All
29 Set graphics origin 4 All
30 Home cursor 0 All
31 Move cursor to X,Y 2 All
32 ASCII printable characters SPACE to ... 0 All
126 ASCII tilde ~ 0 All
127 Delete last character 0 All

VDU 23

This performs several functions depending on the second parameter.
If the second parameter is above 31, the command simply defines the
bit pattern for the ASCII character denoted by the second parameter.
Otherwise, the command controls aspects of text display. The table
uses the BBC BASIC 4 convention of terminating a VDU sequence
which needs a number of zeros with ”|” which represents “9 zeros”.
The command always requires 9 parameters, so if programming in
assembler, or in earlier versions of BASIC, follow the command with
enough zeros to make 9 altogether. Note that BBC BASIC 4 actually
sends 9 ASCII zeros in all events, as the extra ones have no effect, and
you might like to write a subroutine to do just this, to avoid having to
count the required number.

VDU Action performed Machine

23,0 Write to 6845 VDU 23,0,reg,valuel All

23,1 Cursor state VDU 23,1 | = off, VDU 23,1,1| =on All
VDU 23,2 =steady, VDU 23,3 =slow

23,2 Set Extended Colour Fill pattern 1 M/C

23,3 Set Extended Colour Fill pattern 2 M/C

234 Set Extended Colour Fill pattern 3 M/C

194

e £ L

.
{

23,5
23,6
23,7
23,8
23,9
23,10
23,11
23,12
23,13
23,14
23,15
23,16
23,17
23,18
23,19
23,20
23,21
23,22
23,23
23,24
23,25
23,26
23,27
23,28
23,29
23,30
23,31
23,32
23,33
23,255

Set Extended Colour Fill pattern 4

Set dotted line mark/space ratio

Scroll a text window

Clear a text window

Set n 1/50s flash time colour 1: VDU 23,9,n |
Set n 1/50s flash time colour 2: VDU 23,10,n
Set default ECF patterns: VDU 23,111

Set simple ECF pattern 1

Set simple ECF pattern 2

Set simple ECF pattern 3

Set simple ECF pattern 4

Control cursor directional movement
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved : Acorn Communicator font changes
Master Compact/GXR Sprites

User call

User call

User call

User call

Define matrix of ASCII character 32
Define matrix of ASCII character 33 to..
Define matrix of ASCII character 255

Appendix C

M/C
M/C
M/C
M/C
M/C
M/C
M/C
M/C
M/C
M/C
M/C
M/C

Comm.
C

All
All
All

All
All
All

Parameters from 33 to 255 are also for redefining character’s
matrices. The matrix for character 127 can be defined, but cannot be
used, as this is a control code (DELETE).

195

Master Operating System : A Dabhand Guide

VDU 25

This command, equivalent to PLOT in BBC BASIC, is for drawing high
resolution graphics on screen. The commands come in groups of eight.
The groups are formed as follows.

0 Move old graphics cursor to current graphics cursor.

1 Plot in current graphics foreground colour.

2 Plot in inverse of current pixel colour.

3 Plotin current background colour.
These number apply to relative plotting. For absolute plotting add 4
to this. Therefore to plot an inverse line, minus the final point, using
absolute co-ordinate, the plot number would be 25+4+2 = 31. All VDU
25 commands take five parameters—the plot number, the X co-

ordinate, low byte then high byte, followed by the Y co-ordinate in
the same manner.

VDU Action performed Machine
25,0 Plot line All
25,8 Plot line minus final point All
25,16 Plot dotted line All
25,24 Plot dotted line minus final point All
25,32 Plot line minus initial point M/C
2540 Plot line minus initial and final point M/C
25,48 Plot dotted line minus initial point M/C
25,56 Plot dotted line minus initial and final point M/C
25,64 Plot dot All
25,72 Fill line to left and right non-background All
25,80 Plot triangle All
25,88 Fill line to right to background All
25,96 Plot rectangle M/C
25,104 Fill line to left and right to foreground M/C
25,112 Plot parallelogram M/C
25,120 Fill line to right to non-foreground M/C
25,128 Flood fill to non-background M/C
25,136 Flood fill to foreground M/C
25,144 Plot circle M/C
25,152 Plot filled circle M/C
196

E

——r Appendix C
o 25,160 Plot circular arc M/C
~ 25,168 Plot filled chord segment M/C
25,176 Plot filled sector M/C
e 25,184 Move/copy rectangle M/C
I 25,192 Plot ellipse outline M/C
25,200 Plot solid ellipse M/C
e 25,208 Reserved M/C
I 25,232 Sprites C
25,240 Reserved for user calls M/C
I ~
‘-\-}
E
-—-\,
-
N
]
"-:,‘
H
-—-J;l
197

D : Memory Map

The memory maps are listed below. Most of the usage is similar
across the range of Acorn machines, so we have produced only one
memory map, and noted the differences, instead of producing separ-

ate maps.

Page &00 (0)
Models B/B+/E

&00-&8F
&90-&9F
&AO0-&A7
&A8-&AF
&B0-&BF
&CO0-&CF
&D0

&D1

&D2

&D3

&D4

&D5
&D6-&D7
&D8-&D9
&DA-&DB
&DC-&DD
&DE-&DEF
&E0-&E1
&E2

&E3
&E4-&E6
&E7
&E8-&E9
&EA

&EB

&EC

198

Language workspace

Econet system workspace

NMI owners workspace

Operating system scratch space

Filing system scratch space

Filing system workspace

VDU status byte (STATS)

Byte mask for current graphics point (ZMASK)
Text colour OR mask (ZORA)

Text colour EOR mask (ZEOR)

Graphics colour OR mask

Graphics colour EOR mask

Addr of top line of curr graphics char cell
Address of top scan line of curr text char
Graphics scratch space (ZTEMP)
Graphics scratch space (ZTEMPA)
Graphics scratch space (ZTEMPB)
Pointer to multiplication tables

CFS/REFS status byte

CFS/RFS options byte

General OS workspace

Auto-repeat countdown timer byte
Pointer to input buffer for OSWORD &00
RS423 timeout counter

Cassette/RFS 'critical’ flag

Internal key number of most recently pressed key

gt e

Appendix D

&ED Internal key number of most recent key but one

&EE Internal key number of character to be ignored when
using OSBYTE &79. Also allocated as 1 MHz bus
paging register.

&EF A value for last OSBYTE/OSWORD

&FO0 X value for last OSBYTE/OSWORD

&F1 Y value for last OSBYTE/ OSWORD

&F2-&F3 Used (with Y) as a text pointer for command input

&F4 RAM copy of ROMSEL (&FE30)

&F5 Logical speech PHROM or ROM filing system ROM
number.

&F6-&F7 Address pointer into paged ROM/speech PHROM

&F8-&F9 Spare

&FA-&FB General OS workspace

&FC Interrupt accumulator save register

&FD-&FE Pointer to last error number/message

&FF Escape flag (bit 7)

Master 128/Compact

Identical except :-

&EO0-&E1 General workspace. There is no access to the
multiplication table on the Master and Compact.

&F8-&F9 Now soft key expansion pointer. Points to next free

byte in soft key buffer. These bytes used to be spare,
so beware Model B programs that used them for
their own purposes.

On Compact, CFS locations apply to RFS only. On Master/Compact
&F5-&F7 used as RFS pointers only.

Page &01 (1)
All Machines

&100-&1FF
&100-

&128-

6502 hardware stack.

Error message buffer - used by most sideways ROMs
to store their error messages.

Used by Tube Host Code to store parameter blocks.

199

Master Operating System : A Dabhand Guide

Page &02 (2)

Models B/B+/E

&200-&235 MOS vectors

&236-&28F System variables accessed by OSBYTEs &A6-&FF
&290 VDU vertical adjust (as set by OSBYTE &90)

&291 Interlace toggle flag (as set by OSBYTE &90)
&292-&296 First value of TIME

&297-&29B Second value of TIME

&29C-&2A0 Countdown interval timer value

&2A1-&2B0 Paged ROM type byte table (pointed to by OSBYTEs
&AA and &AB)

&2B1-&2B2 INKEY countdown timer

&2B3-&2B5 Work locations OSWORD 0

&2B6-&2B9 Low bytes of most recent ADC conversions
&2BA-&2BD High bytes of most recent ADC conversions

&2BE Last channel to finish conversion =
&2BF-&2C8 Event enable flags

&2C9 Soft key expansion pointer

&2CA First auto-repeat count

&2CB-&2CD Workspace for two-key rollover

&2CE Sound semaphore

&2CF-&2D7 Buffer busy flags

&2D8-&2E0 Bulffer start indices (next byte to be removed)
&2E1-&2E9 Buffer end indices (last byte to be inserted)
&2EA-&2EB Block size of current block of open CFS input file
&2EC Block flag of current block of open CFS input file
&2ED Last character of current block as above
&2EE-&2FF Control blocks for OSFILE during *LOAD and *SAVE

Master 128/Compact

As the soft key expansion pointer now requires two bytes, it has been
moved to &F8/&F9. &2C9 is thus free, and all the following bytes
move down one:

200

gt

&2C9
&2CA-&2CC
&2CD
&2CE-&2D6
&2D7-&2DF
&2E0-&2E8
&2E9-&2EA
&2EB

&2EC

&2ED

Page &03 (3)

Models B/B+/E

&300-&307
&308-&30B

&30C-&30F

&310-&313
&314-&317
&318

&319

&31A
&31B-&31E
&31F-&323
&324-&327
&328-&349

&34A-&34B
&34C-&34D
&34E

&34F
&350-&351
&352-&353
&354

Appendix D

First auto-repeat count

Workspace for two-key rollover

Sound semaphore

Buffer busy flags

Buffer start indices (next byte to be removed)
Buffer end indices (last byte to be inserted)
Block size of current block of open CFS input file
Block flag of current block of open CFS input file
Last character of current block as above

Spare

Current graphics window in internal co-ordinates

Current text window in same order as VDU 28
command

Current graphics origin in same order as VDU 29
command

Current graphics cursor

Old graphics cursor (in internal)

POS

VPOS

Line within current graphics char of POINT
Graphics workspace or part of VDU queue
VDU queue (always ends at &323)

Current graphics cursor (in internal)

General graphics co-ordinate workspace (Don’t use
&328 in Mode 7/135)

Text cursor address for 6845

Text window size in bytes (for scrolling)

High byte of HIMEM (ignoring shadow)

No of bytes taken by a char in this mode

Address of top left corner of screen, as sent to 6845
No of bytes taken per char row of the screen.

Size of screen memory (in pages)

201

Master Operating System : A Dabhand Guide

&355
&356
&357-&35A
&35B

&35C

&35D-&35E
&35F

&360

&361
&362-&363
&364-&365
B/B+/E
&366

&367
&368-&36E
M/C

&366

&367

&368

&369

&36A

&36B

&36C
&36D
&36E

All machines
&36F-&37E

&37F

202

Current screen mode (ignoring shadow)
Memory map type
Current colours being used by the MOS

Current graphics foreground plot mode (as set by
VDU 18)

Current graphics background plot mode (as set by
VDU 18)

General jump vector

Last setting of 6845 cursor start register

No of logical colour in this mode -1

No of pixels per byte in this mode -1 (0=text)
Left and right colour masks

Xand Y co-ordinates of text input cursor

Teletext output cursor character (Default=&FF)
Font flag
Hi-bytes of addresses for sections of font

VDU 23,16 setting
Dot pattern (as set by VDU 23,6)
Current state of dot pattern

Colour plotting. This is set to the ECF pattern if ECF
in use, else zero

Graphics foreground. Set to ECF pattern if ECF in
use, else zero

Graphics background. Set to ECF pattern if in use,
else zero

Top bit set when cursor is in column 81
Current graphics foreground colour (as set by GCOL)
Current graphics background colour (as set by GCOL)

Colour pallette-contains physical colour for each
logical one.

Spare

g

Appendix D

&380-&3DF are CFS (or RFS) workspace. This space is completely
free if you are not using CFS or RFS. It is set to zero on power-up and is
not altered by hard reset, except for &3D1 which is set to its default
of &19 (25). The locations apply to all machines. Obviously the
Compact uses them for RFS only, so &380-&3A6 (not &39E) are al-
ways free to the Compact or if you are only reading from CFS.

&380-&39C
&39D

&39E
&39F-&3A6
&3A7-&3B1
&3B2-&3BC
&3BD
&3BE-&3C1
&3C2-&3C5
&3C6-&3C7
&3C8-&3C9
&3CA
&3CB-&3CE
&3CF-&3D0
&3D1
&3D2-&3DB
&3DC
&3DD-&3DE
&3DF
&3E0-&3FF

Pages 4-7

All machines
&400-&7FF
Page &08 (8)
All machines.

&800-&83F
&840-&84F

Header block for CFS BPUT files

Offset for next byte to be BPUT by CFS

Offset for next byte to be BGET by CFS

Spare

Filename of current CFS input file

Filename of most recent CFS block read

&00

Load address of most recent CFS block read
Exec address of most recent CFS block read
Block number of most recent CFS block read
Length of most recent CFS block read

Flag byte of most recent CFS block read

Spare bytes (will be overwritten by next CFS block)
Checksum bytes of most recent CFS block read
CFS sequential block gap as set by *OPT 3
Filename of file being searched for

&00

Number of next block expected by BGET

Copy of flag byte of last block read
Keyboard input buffer

Language workspace

Sound workspace
Sound channel 0 buffer

203

Master Operating System : A Dabhand Guide

&850-&85F Sound channel 1 buffer
&860-&86F Sound channel 2 buffer
&870-&87F Sound channel 3 buffer
&880-&8BF Printer buffer

&8C0-&8FF Storage of ENVELOPEs 14 (first 13 bytes of each 16
used)

Page &09 (9)
All machines

&900-&9BF Storage of ENVELOPES 5-16 or R$423/Cassette buffer
(RS423 /Cassette activity will overwrite the
envelope data)

&9C0-&9FF Speech buffer or Cassette buffer. The RS423 buffer
runs to &9BF, but the cassette buffer extends to a full
256 bytes. Note that CFS OSFILE does not corrupt the

cassette buffer.

Page &0A (10)

All machines
&A00-&AFF Cassette or RS423 input buffer

Page &0B (11)

The uses of pages &0B and &0C has totally changed on the Master
Series. If you are sure that your program will not be used on Econet,

and will only be run on Master 128s, you may use these pages for code
or data.

Model B/B+/E

&B00-&B10 Soft key pointers
&B11-&BFF Soft key definitions

Master 128/Compact

&B00-&BFF Econet workspace
&B01 Station number
&B02 File server station number
&B03 File server network number
&B18 Printer server type string

204

U e e e U

Appendix D

Page &0C (12)
Model B/B+/E

&C00-&CFF Character definitions - ASCII characters 128-159
Master 128/Compact

&C00-&CFF Ecdnet workspace
Page &0D (13)

All machines

&D00-&D5F NMI handler code (on Model B, up to &D9E was
reserved)

&D60-&D7F Econet workspace

&D80-&D91 Spare

&D92-&DI9E Reserved for use by Trackerball / input device
&DI9F-&DEF Extended vector table for paged ROMs

&DF0-&DFF Private workspace or frugalising table for paged
ROMs

Page &OE to &7F

Model B/B+/E

If a Filing system such as DFS and/or ADFS is fitted then these will
claim workspace memory. The amount claimed will vary but as a
rule of thumb expect PAGE to be set to &1900 through to &2000. Me-
mory above this to &7FFF is free for applications.

Master 128/Compact
User RAM to &7FFF free for application programs.

Private RAM

Master 128/Compact

A 12k block of Private RAM exists on Master series computers divi-
ded into two blocks. The first, called ANDY, is 4k in length and the
second called HAZEL, is 8k in length. This 12k block is present on the
Model B+ but unlike Master series micros it is not used by the MOS or
sideways ROMs as workspace.

205

Master Operating System : A Dabhand Guide

ANDY - &8000 to &8FFF

Master 128/Compact

&8000-&800F Start addresses of 16 soft key strings (low bytes)
&8010 End address+1 of last string (low byte)
&8011-&8020 Start addresses of 16 soft key strings (high bytes)
&8021 End address+1 of last string (high byte)
&8022-&83FF Soft key data (no terminators, all pure data)
&8400-&87FF VDU drivers

&8800-&88FF VDU variables

&8900-&8FFF Current character definitions 32-255

HAZEL - &C000 to &DFFF

Master 128/Compact
&C000-&DBFF Workspace for paged ROMs

&DC00-&DCFF MOS CLI buffer. You can use this but it will be
corrupted by all * commands.

&DD00-&DEFF Available for user routines. This area is used by
*MOVE and other MOS routines.

&DF00-&DFFF Various controls, mostly to do with filing
systems. A complete list of memory usage in
page &DF is given in Chapter 8.

Pages &80-&BF

All machines

These are occupied by 16 banks of sideways RAM or ROM. Details of
the mapping is given in Chapter 5. Also in this area is ANDY,
details of which are given above.

Pages &C0-&FB

All machines

This is occupied by Operating System ROM, when HAZEL is not
switched in.

Page &FC (252) - FRED

All machines
&FC00-&FCOF Test hardware

206

A e L U

&FC10-&FC13
&FC14-&FC17
&FC18-&FC1F
&FC20-&FC27
&FC28-&FC2F
&FC30-&FC3F
&FC40-&FC47
&FC48-&FC4F
&FC50-&FC7F
&FC80-&FC8F
&FC90-&FCFE
&FCFF

Appendix D

Teletext
Unallocated
Reserved

IEEE 488
Unallocated
Reserved
Winchester
Reserved
Unallocated
Test hardware
Unallocated
Paged memory register

Page &FE (254) - SHEILA

Master 128/Compact

This is where all the I/O devices are mapped. Some 1/O devices are
mapped directly, others are accessed on the slow data bus of the
system VIA. The Compact of course, has some devices missing. For
more details on the 1/O devices see the User Guide, Advanced User
Guide, and the New Advanced User Guide. and Master Ref. Pt.1

Read Write
&FEQO 6845 CRTC addr. reg. Do.
&FE01 6845 CRTC data reg. Do.
&FE08 6850 ACIA status reg. 6850 control register
&FEQ9 6850 ACIA recve datareg. 6850 transmit register
&FE10 - 1 MHz SerProc (ULA)
&FE18 7002 ADC status register 7002 ADC data latch
&FE19 7002 ADC data high byte -
&FE1A 7002 ADC data low byte -
&FE20 - VIDPROC control register
&FE21 - VIDPROC palette register
&FE24 Control latch for 1770
&FE28 1770 FDC data register
&FE30 - ROMSEL
&FE34 ACCCON select register Do.
&FE40 Input Slow Control Bus ~ Output Slow Control Bus

207

Master Operating System : A Dabhand Guide

&FE41
&FE42
&FE43
&FE44
&FE45
&FE46
&FE47
&FE48
&FE49
&FE4A
&FE4B
&FE4C
&FE4D
&FE4E
&FE4F
&FE60
&FE61
&FE62
&FE63
&FE64
&FE65
&FE66
&FE67
&FES80
&FE84
&FEAQ
&FEEQ
&FEE1
&FEE2
&FEE3
&FEE4
&FEES
&FEE6
&FEE7
&FEES8

208

Input Slow Data Bus Output Slow Data Bus
Data Direction SCB
Data Direction SDB
Timer 1 Low Order counter Timer 1 Low Order latch
Timer 1 High Order counter

Timer 1 Low Order latch
- Timer 1 High Order latch
Timer 2 Low Order counter Timer 2 Low Order latch
Timer 2 Hi Order counter
Shift Register
Auxiliary Ctrl Register
Peripheral Ctrl Register
Interrupt Flag Register
Interrupt Enable Register
Input Slow Data Bus Output Slow Data Bus
Input User Port Output User Port
- Output printer data
Data Direction User Port Do.
Data Dir. Printer Data Do.
Timer 1 Low Order counter Timer 1 Low Order latch
Timer 1 High Order counter
Timer 1 Low Order latch
- Timer 1 High Order latch

Int. Modem Data Int. Modem Data
Int. Modem Control Int. Modem Control
Net interface

Tube RISTAT Do.

Tube R1IDATA Do.

Tube R2STAT Do.

Tube R2DATA Do.

Tube R3STAT Do.

Tube R3DATA Do.

Tube R4STAT Do.

Tube R4DATA Do.

Reserved for Tube splitter Do.

U LG UL

|
\

Appendix D

The missing addresses contain further images of the various ports, as
full address decoding is not performed. The changes from the B/B+
are that the ADC and disc controllers have moved, they were
previously mapped at &FECO and &FE80 respectively, the disc
controller of course being a different device on the Model B (but the
1770 was mapped at &FE80-&FE84 on the BBC B+). Also the Econet
station identity used to be hardwired at &FE18, but is now contained
in byte 0 of non-volatile memory.

Page &FF (MOS)

Your machine code may use any workspace designated as ‘scratch’
provided that it does not expect it to be preserved after any system
call. In general you may safely use areas reserved for certain func-
tions if you can guarantee that those functions will not be invoked. ie
if there is no sound in your program, you may use the sound buffers for
other purposes. Note however that hard or soft reset may wipe all
memory designated as buffer space, and load defaults for all MOS
variables, even those you may not be using. See Appendix E for a list
of the MOS calls, whose entry points are in page &FF.

Graphical maps

The next three pages contain graphical maps to show you how the
memory in the BBC B, B+, and Master Series is allocated.

MOS—N 209

Master Operating System : A Dabhand Guide

210

MOS ROM E':;F_
ROM %o FCO0
MOS
ROM
1
C000
Other Selected
sideways sideway
RAM/ROM RAM or
ROM
8000
Main
Screen
RAM
3000
User
RAM
0EQ0
System 0000

FIGURE D.1 BBC B/Electron Memory Map.

gttt et e

MOS ROM

Appendix D

ROM

Vo

MOS
ROM

Other
sideways
RAM/ROM

Selected

sideway

RAM or
ROM

Private
RAM

Main
Screen
RAM

Shadow
Screen

User
RAM

System

FIGURE D.2 BBC B+ Memory Map.

FEFF
FC00

A000

8000

3000

OEO00

0000

211

Master Operating System : A Dabhand Guide

MOS ROM |

ROM

{®)

212

MOS
ROM

HAZEL

Other
sideways
RAM/ROM

Selected

sideway

RAM or
ROM

ANDY

Main
Screen
RAM

Shadow
Screen

User
RAM

System

FEFF
FCoo

Coo0

9000

8000

3000

OE00

0000

FIGURE D.3 Master Series Memory Map.

A U U R

E : OS Call Item List

Baud Rates

These are the baud rates supported by the serial system. These
numbers are used by OSBYTE &07 and &08, and *CONFIGURE and

*STATUS
1 75 baud
2 150 baud
3 300 baud
4 1200 baud
5 2400 baud
6 4800 baud
7 9600 baud
8 19200 baud
Buffers

OSBYTE &15, &80, &8A, &91 etc. control the various buffered 1/0
channels, and make extensive use of buffer numbers. These are the
various buffers and their numbers.

0

W NG W N

Keyboard buffer

RS423 input buffer

RS423 output buffer

Printer buffer

Sound channel 0 buffer

Sound channel 1 buffer

Sound channel 2 buffer

Sound channel 3 buffer

Speech buffer (Reserved on Master)

213

Master Operating System : A Dabhand Guide

Events

The event vector (&220) is entered with A set to the ‘event number’,
which is also the numbering system used by OSBYTE &0D and &0E.
Note that event 254 is not affected by OSBYTE &0D/ &OE, but instead
by OSBYTE &34.

0 Output buffer has become empty
Input buffer has become full
Character has entered buffer

-

An ADC conversion is complete

Start of vertical sync signal

Interval timer has crossed zero

The active ESCAPE key has been pressed
An RS423 error has occurred

A network error has occurred

The user has generated an event

W 0 3 O b W N =

2

Network receive event

Filing System Information

No.Name BREAK Selected by
0 No filing system - *NOTAPE (OS 0.1 only)
1 1200baud CFS SPACE *TAPE
2 300 baud CFS - *TAPE 3
3 RFS SHIFT-SPACE *ROM
4 DFS D *DISC / *DISK
5 NFS *NET
6 Telesoftware FS T *TELESOFT
7 IEEEFS I *IEEE
8 ADFS A/F *ADFS / *FADFS
9 Host Filing System - -
10 Videodisc FS Q/L *VFS / *LVFS

214

gt €t et

System Calls and Vectors

These are all the system entry points, and the vectors through which
they pass. Note that some vectors have no ROM entry point, so you
call them by JMP (vector), and some MOS routines are not vectored
(such as GSINIT)

Routine

OSCLI
OSBYTE
OSWORD
OSWRCH
OSRDCH
OSFILE
OSARGS
OSBGET
OSBPUT
OSGBPB
OSFIND

OSEVEN

Address

&FFF7
&FFF4
&FFF1
&FFEE
&FFEQ
&FFDD
&FFDA
&FFD7
&FFD4
&FFD1
&FFCE

&FFBF

Vector
USERV
BRKYV
IRQ1V
IRQ2V
CLIV
BYTEV

Addr
&200
&202
&204
&206
&208
&20A

WORDV &20C
WRCHV &20E

RDCHV
FILEV
ARGSV
BGETV
BPUTV
GBPBV
FINDV
FSCV
EVENTV
UPTV
NETV
vDUV
KEYV
INSV
REMV
CNPV

&210
&212
&214
&216
&218
&21A
&21C
&21E
&220
&222
&224
&226
&228
&22A
&22C
&22E

Appendix E

Ext Vector Address & action
&FF00 *CODE, *LINE etc.
&FF03 All BRKs thru here
&FF06 All interrupts
&FF09 All unrec. interrupts
&FFOC ™ commands
&FFOF *FX calls

&FF12 OSWORD calls
&FF15 Output character
&FF18 Get character
&FF1B *LOAD/*SAVE
&FF1E Misc. file info
&FF21 Get 1 byte from file
&FF24 Put 1 byte to file
&FF27 Misc. file transfers
&FF2A Open/close files
&FF2D Filing system ctrls
&FF30 Cause an event
&FF33 User print vector
&FF36 All Econet data
&FF39 All VDU output
&FF3C All key presses
&FF3F Insertion to buffer
&FF42 Removal from buffer
&FF45 Count/purge buffer

215

Master Operating System : A Dabhand Guide

Routine Address Vector Addr Ext Vector Address & action -

IND1V &230 &FF48 Spare 1 -
IND2V &232 &FF4B Spare 2
IND3V &234 &FF4E Spare 3 ~

OSASCI &FFE3 via OSWRCH OSWRCH with CR=CRLF
OSNEWL &FFE7 via OSWRCH Print a CRLF

OSVDU &FFBC Not vectored =~ Raw VDU entry point
OSRDSC &FFB9 Not vectored Read from paged mem.
OSWRSC &FFB3 Not vectored Write to paged mem.
GSINIT &FFC2 Not vectored Initialise (&F2),Y
GSREAD &FFC5 Not vectored Read from (&F2),Y
NVRDCH &FFC8 Not vectored Unvectored OSRDCH
NVWRCH &FFCB Not vectored Unvectored OSWRCH

&FFB6/8VECTAB &FFB6-Length
&FFB7 /8-Address of default
vector table

NMIV &FFFA 6502 NMI vector
RESETV &FFFC 6502 reset vector
IRQV &FFFE 6502 IRQ vector

216

A U e e U

F : Key Numbers

This is a table of the ASCII codes, and internal numbers generated by

each key. The INKEY number equals the internal key number EOR
&FFFF. So SPACE is (98 EOR &FFFF)=&FF9D=-99. The only MOS

call using internal key numbers is OSBYTE &78. The INKEY numbers

are used by OSYTE &81. The ASCII numbers are used by OSRDCH.

Key/
char
SPACE
f

“"

W N = O~

ASCII
dec

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

hex
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33

INKEY
dec

-99
See ‘1’
See 2’
See ‘3’
See ‘4’
See ‘5’
See ‘6’
See ‘7
See ‘8’
See ‘9
See ‘'
See ‘;’
-103
-24
-104
-105
-40
-49
-50
-18

hex
9D

Internal Key No
dec hex
98 62
102 66
23 17
103 67
104 68
39 27
48 30
49 31
17 11

217

Master Operating System : A Dabhand Guide

Key/ ASCII INKEY Internal Key No
char dec hex dec hex dec hex
4 52 34 -19 ED 18 12
5 53 35 -20 EC 19 13 =
6 54 36 -53 CB 52 34
7 55 37 -37 DB 36 24
8 56 38 -22 EA 21 15
9 57 39 -39 D9 37 25
58 3A -73 B7 72 48
; 5 3B -88 A8 87 57
< 60 3C See’/

61 3D See ‘~

> 62 3E See’’

? 63 3F See‘/’

@ 64 40 -72 B8 71 47

(Code key on O)

A 65 41 - 66 BE 65 41
B 66 42 -101 9B 100 64
C 67 43 -83 AD 82 52
D 68 44 -51 CD 50 32
E 69 45 -35 DD 34 22
F 70 46 -68 BC 67 43
G 71 47 -84 AC 83 53
H 72 48 -85 AB 84 54
I 73 49 -38 DA 38 26
] 74 4A -70 BA 69 45
K 75 4B -71 B9 70 46
L 76 4C -87 A9 8 56
M 77 4D -102 9A 101 65

218

A

A

o
<

S~

m o AN o ‘I >—= T NKXs<OH®»ROTWOZSG
»
o}

ASCII
dec

78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

hex
4AE
4F
50
51
52
53

55
56
57
58
59
5A
5B

5D
5E
5F
60
61

SGR2ER

66
67

INKEY
dec

-86
-55
-56
-17
-52
-82
-36
-54
-100
-34
-67
-69
-98
-57
-121
-89
-25
-41
See
See ‘A’

i

hex
AA
C9
C8
EF
CC
AE
DC
CA

DE
BD
BB
9E
c7
87
A7
E7
D7

Appendix F
Internal Key No
dec hex
8 55
54 36
55 37
16 10
51 33
81 51
35 23
53 35
99 63
33 21
66 42
68 44
97 61
56 .38
120 78
88 58
24 18
40 28

219

Master Operating System : A Dabhand Guide

Key/ ASCII INKEY Internal Key No
char dec hex dec hex dec hex
h 104 68

i 105 69 -
j 106 6A

k 107 6B

1 108 6C

m 109 6D

n 110 6E

o 111 6F

P 112 70

q 113 71

r 114 72

s 115 73

t 116 74

u 117 75

v 118 76

w 119 77

X 120 78

y 121 79

z 122 7A

< 123 7B

I 124 7C

> 125 7D

~ 126 7E

ESCAPE 27 1B -113 8F 112 70
TAB 9 9 -97 9F 86 60
CAPS LOCK - 65 BF 64 40
CTRL -2 FE 1 1

220

B O L e U L

Appendix F
Key/ ASCH INKEY Internal Key No
char dec hex dec hex dec hex
SHIFT LOCK -81 AF 80 50
SHIFT -1 FF 0 0
DELETE 127 7F -90 A6 8 59
corYy 135 87 -106 96 105 69
RETURN 13 0D -74 Bé 73 49
UP CURSOR 139 8B -58 Cé 57 39
DN CURSOR 138 8A -42 Dé 41 29
LT CURSOR 136 88 -26 E6 25 19
RT CURSOR 137 89 -122 86 121 79
f0 -33 DF 32 20
f1 -114 8E 113 71
f2 -115 8D 114 72
£3 -116 8F 115 73
f4 -21 EB 20 14
f5 -117 8B 116 74
f6 -118 8C 117 75
£7 -23 E9 22 16
8 -119 8D 118 76
f9 -120 8E 119 77
Start Up Option
Model B/B+ only (on front of keyboard)
bit 0 9 09
bit 1 8 08
bit 2 7 07
bit 3 6 06
221

Master Operating System : A Dabhand Guide

Key/ ASCII INKEY Internal Key No
char dec hex dec hex dec hex
bit 4 5 05
bit 5 4 04 %
bit 6 3 03
bit 7 2 02
Numeric Keypad
Master 128 and Compact only
Kpad 0 48 30 -107 95 106 6B
Kpad 2 50 32 -125 83 124 7C
Kpad 3 51 33 -109 93 108 6C
Kpad 4 52 34 -123 85 122 7A
Kpad 5 53 35 -124 84 123 7B s
Kpad 6 54 36 -27 E5 26 1A
Kpad 7 55 37 -28 E4 27 1B
Kpad 8 5 38 -43 D5 2 2A
Kpad 9 57 39 -44 D4 43 2B
Kpad # 3B 23 -91 A5 90 5A
Kpad + 43 2B -39 C5 58 3A
Kpad - 45 2D -60 C4 59 3B
Kpad / 47 2F -75 BS 74 4A
Kpad * 42 2A -92 A4 91 5B
KpDELETE 127 7F -76 B4 75 4B
Kpad , 4 2 -93 A3 92 5C
Kpad . 46 2E -77 B3 76 4C
KpRETURN 13 0D -61 C3 60 3C

222

B ettt

G : PCB Links

The circuit board links on BBC Microcomputers allow various options
to be selected, these are in the main to do with fixing of temporary
problems, but also to configure the machine to work in a particular
hardware setup. In the lists below, L=Link, ie, L24=Link 24. Link
numbers are sometimes shown on the circuit board as $24, which
means Link 24. b is used for bit, ie, b4=bit 4. The four points of the
compass, N,5,W and E, are used to signify the direction of the link
being described. This assumes that you have the circuit board in front
of you in the position in which it sits during use. North is away from
you, South is near you, West is to your left hand, and East to your
right.

BBC Model B

L1 N=Selects printer strobe on printer connector.
S=Selects 6522 CA2 connected to printer strobe.

L2 O=Enable Econet NMI.
C=Disable Econet NMI. Don’t do this when Econet interface
fitted.

Clock base frequency for Econet. Not fitted from Issue 4.

L3

14 E=5.25"/3.5" /3" disc interface.
W=8" disc interface.

L5

N=Enable Econet clock.
S=Disable Econet clock. Not fitted from Issue 4.

L6 N=Divide Econet clock by 2.
S=Divide Econet clock by 4. Not fitted from Issue 4.

L7 W=Connect 8271 (pin 30) to +5v.
E=Connect 8271 (pin 30) to Ov.

L8 O=Disconnects the disc head load from PLS8.
C=Connects the disc head load to PL8.

L9 O=Enable disc NMI.
C=Disable disc NMI.

L10 W=Select 5.25”/3.5” /3" disc interface.
E=Select 8” disc interface.

223

Master Operating System : A Dabhand Guide

L11

L12

L13

L14

L15

L1é6

L17

L18

L19

L20

L21

L22

L23

L24

224

This block of eight links determines the Econet station
number, and appears at &FE18 in the memory map. Open links
are read as 1, closed links as 0. b7 is at the SOUTH end.

C=Connect ROM select line A to Ov - Model A.
O=ROM select line A driven by IC76 (mapped at &FE30)—
Model B.

C=Connect ROM select line B to 0v - Model A.
O=ROM select line B driven by IC76 (mapped at &FE30)—
Model B.

O=Enable I/O in page &FD.
C=Enable ROM in page &FD.

O=Enable fast access to page &FD.
C=Disable fast access to page &FD.

O=Enable fast access to page &FC.
C=Disable fast access to page &FC.

O=Disable FRED, enable ROM output from page &FC.
C=Enable FRED, disable ROM output from page &FC.

N=Fast access to sideways ROM IC100.
S=Slow access to sideways ROM IC100.

W=Slow access to sideways ROMs IC52, IC88, IC101.
E=Fast access to sideways ROMs IC52, 1IC88, IC101.

N=ROMSEL provides HIGH ROM select to IC20.
S=A13 provides HIGH ROM select to IC20.

Two position links:

NS/NS=IC51 mapped at &8000-&BFFF, other ROMs at
&C000-&FFFF.

EW/EW=IC51 mapped at &C000-&FFFF, other ROMs at
&8000-&BFFF.

N=ROMSEL provides LOW ROM select to IC20.
S=A12 provides LOW ROM select to IC20.

N=RS423 data line not terminated.
S=RS423 data line terminated.

0O=RS423 CTS line not terminated.
C=RS423 CTS line terminated.

EEE

L25

L26

L27

L28

L29

L30
L31

L32

L33

L34

L35

L36

L37

L38

L39

Appendix G

N=32k RAM select - Model B
S=16k RAM select - Model A

W=Normal video output.
E=Inverse video output.

W=5.25"/3.5" /3" disc select (8 MHz clock).
E=8" disc select (16 MHz clock).

=Base baud rate select.
E=1200 baud rate select.

W=1200 baud rate select.
E=Base baud rate select.

Used to wire-OR ROM select signals. See L34-L38.

W=positive RGB CSYNC.
E=negative RGB CSYNC.

W=A13 pins IC52 and IC88 to processor A13.
E=A13 pins IC52 and IC88 to +5v.

W=A13 pins IC100 and IC101 to processor A13.
E=A13 pins IC100 and IC101 to +5v.

O=Allows OS ROM to be wire-OR’ed.
C=Uses ordinary OS ROM select (Issue 4 onwards).

O=Allows IC52 ROM to be wire-OR’ed.
C=Uses ordinary IC52 ROM select (Issue 4 onwards).

O=Allows IC88 ROM to be wire-OR’ed.
C=Uses ordinary IC88 ROM select (Issue 4 onwards).

O=Allows IC100 ROM to be wire-OR’ed.
C=Uses ordinary IC100 ROM select (Issue 4 onwards).

O=Allows IC101 ROM to be wire-OR’ed.
C=Uses ordinary IC101 ROM select (Issue 4 onwards).

O=Mono output on BNC socket.
C=Colour output on BNC socket.

BBC Model B+

L1
L2

8/16 MHz clock select for 8271 data window.
Select ready between internal and external.

225

Master Operating System : A Dabhand Guide

L3
L4
L6
L7

L8

L9

L10

L11
L12

L13
L14

L15

L16

L17
L18

L19

226

Disc controller side select line control.
Switch disc index input.
Select 5.25” or 8” disc drives.

E=1770 Disc Interface fitted.
W=8271 Disc Interface fitted.

0O=8271 circuitry enabled.
C=1770 circuitry enabled.

W=Slot 2/3 (IC35) accepts 16k (27128-compatible) ROMs.
E=IC35 accepts 32k (27256-compatible) ROMs (Top half
appearsin slot 2)

W=Disable BREAK key.
E=Enable BREAK key.

W=Slot 4/5 socket (IC44) accepts 16k ROMs.
E=IC44 accepts 32k (27256-compatible) ROMs (Top half
appears in slot 4).

W=IC57 accepts 16k (27128-compatible) ROMs
E=IC57 accepts 32k (27256-compatible) ROMs (Top half
appearsin slot 6).

N=BASIC/MOS ROM appears in Sockets 0/1.
S=BASIC/MOS ROM appears in Sockets 14/15.

N=True video.
S=Inverse video.

W=Slot 8/9 socket (IC62) accepts 16k ROMs.
E=IC62 accepts 32k (27256—compatible) ROMs (Top half
appearsin slot 8).

O=Deselect BASIC/OS ROM.
C=Select BASIC/OS ROM.

Select high/low level analogue input (Default low).

W=Slot 10/11 (IC68) accepts 16k (27128-compatible) ROMs.
E=IC68 accepts 32k (27256—compatible) ROMs (Top half
appears in slot 10).

W=MOS/BASIC slot (IC71) accepts 16k (27128-compatible)
ROMs.

L e g

L20

L21
L23
L24

L25

L26

L27

L28
L29

L30

Appendix G

E=IC71 accepts 32k (27256-compatible) ROMs (Top half
appears in lower slot).

S=Enable internal speaker (default).
N=Disable internal speaker.

External audio output, normally bypassed by a InF capacitor.
Set of eight links. Econet station identity.

O=R5423 control not terminated.
C=RS423 control terminated.

O=RS423 data not terminated.
C=RS5423 data terminated.

O=Mono output on composite video.
C=Colour output on composite video (hardwired default).

N=Negative RGB CSYNC (Default).
S=Positive RGB CSYNC.

Enable PAL/Disable alternation.

C=Econet collision detect circuitry disabled (Factory default).
O=Econet collision detect circuitry enabled if fitted.

C=Grounded pin 5 of CPU.

Master 128

L1

N

Lé

A=1 MHz bus signal is input via amp to speaker (hardwired
default).
B=1 MHz bus signal is an output from audio circuit.

C=No -5V decoupled supply to cartridge (hardwired
default).
O=-5V decoupled supply to cartridge.

Not present on production boards.

O=Clock chip IRQ on alarm time being reached not active.
C=Above feature is active. No harm will be done if you make
this link.

C=Negative CSYNC polarity. (Hardwired default).
O=Positive CSYNC polarity.

Four pin link:
A—B Computer 16MHz reference provided by onboard crystal.

227

Master Operating System : A Dabhand Guide

B—D Computer 16MHz reference provided by A17 cartridge
pin.

C—D (and A—B) Cartridges clocked by 8MHz onboard signal,
synchronous with 2MHz cartridge signal.

NB: If B—D is made, and no clock source is fitted on the cartridge
port, dynamic RAM will be damaged. Any such cartridges must
therefore be fitted with a locking bar to the computer. GENLOCK
is the main application of this feature.

L7 C=RGB positive polarity (hardwired default).
O=RGB negative polarity.
L8 Not present on production machines.

L9 Switch between 64k and 128k main system ROM. Present but
not usable on production machines.

L10 Not supplied on UK machines. Fitted to NTSC machines to
select channels.

L11 Not present on production machines.

L12 A=Cartridge line A10 is logic low.
B=Cartridge line A10 is CSYNC

L13 C=Analogue VRef supplied by onboard circuitry
(hardwired default).
O=Analogue VRef supplied by user either at PR1 or at VRef
on connector.

L14 Selects whether 1.23 MHz signal is supplied by chroma chip
or IC35. Present but not usable on production machines.

L15 C=TV output is PAL (hardwired default).
O=TV output is NTSC.

L16 O=Chrominance information not filtered from luminance.
C=Chrominance information filtered from luminance.

L17 Not present on production machines.

L18 W=ROM slots 6 and 7 are occupied by Sideways RAM.
E=ROM slots 6 and 7 are occupied by IC41, a 27256—compatible
32K ROM.

L19 W=ROM slots 4 and 5 are occupied by Sideways RAM.
E=ROM slots 4 and 5 are occupied by IC37, a 27256—compatible
32K ROM.

228

g {4t

L20
L21

Appendix G

Not present on production machines.

O=Cartridge line B10, linked to other cartridge line B10.
(hardwired default).

C=Cartridge line B10 fitted to CRTC LPSTB (for GENLOCK, to
avoid having to use the A—D connector).

Master Compact

L1
L2
L3

L4

Lé
L7
L8
L9
L10

L11

L12

L13

This is the audio loudspeaker connector.
This is the Power In connector.

C=Drive 2 (hardware drive, not surface) line of 1772 enabled.
0=Drive 2 line of 1772 disabled (hardwired default).

E=CTS line from 6850 connected to RS232 interface
(hardwired default).
W=CTS line connected to cassette circuitry of Serial ULA.

E=Rx Data line from 6850 connected to RS232 interface
(hardwired default).
W=Rx Data line connected to cassette circuitry of Serial ULA.

This is the keyboard connector, a twin row metric pitch 26
way connector.

O=LPSTB is not connected to the joystick socket. (Hardwired
default).
C=LPSTB is connected to the joystick socket.

This is the digital joystick socket.

E=Normal video display (hardwired default).
W=Inverse video display.

E=Negative RGB sync (hardwired default).
W=Positive RGB sync.

N=ROM slots 0 and 1 read from expansion connector.
(Factory default).

S=ROM slots 0 and 1 read from IC17, a 27256-compatible 32k
ROM.

N=0S ROM IC49 is regarded as a 64k byte ROM.
S5=0S ROM IC49 is regarded as a 128k byte ROM.

This is the 50-way edge connector.

229

Master Operating System : A Dabhand Guide

H : Cartridge ports

Master 128

The Master 128 cartridge ports are two 44 way edge connectors behind
a spring-loaded flap just above the keyboard. The edge connectors
are arranged so that, for each socket, Side B is the side nearer to you
(South), and Side A is the side nearer the back (North). The specifi-
cation is a superset of the Electron Plus 1 system, and the differences
between the two are noted. Accesses to the M128 cartridges are per-
formed at 2 MHz.

Pinout List

la

1ib
2a

%b
3a
3b
4a

4
5a

6a
6b
7a

8a

9a

230

+5V : The main power supply. Maximum rating is 150mA, or
50mA on an Electron.

Connected to 1a

~OE : Output Enable. Active low during the PHI2 period of
the system clock.

A10
~RST : System Reset. Active low during reset.
D3

CSRW : Chip Select, Read /Write. During access to memory
mapped I/O and always on the Electron, this is the 6502
R/W line. On the Master at other times, it is a chip select
(active high).

A1l

A8

A9

Al3

D7

Al2

D6

PHI2 : PHI2 out from the system clock.

D5

-5V : Rate 20mA max on both Electron and M128.

g g e

9b
10a

10b

11a

11b

12a
12b
13a
13b
14a

14b
15a
15b
16a
16b
17a

17b
18a

Appendix H

D4

CSYNC/MADET : If M128 link PL12 is in position A, this is
0V. On an Electron it is NC and thus floats to logic 1. This al-
lows you to test which machine you are on. If PL12 is in the B
position, the pin receives CSYNC signals. Cartridges that
use CSYNC cannot therefore test which machine they are on,
but their control software can do this much more easily any-
way. The pin is NC on an Electron.

~OE 2 : LPSTB/OE2. On the M128, this line is the light pen
strobe, and is also wired to 10b of the other cartridge. On the
Electron it is Output Enable 2, an output enable which is low
during the active low portion of PHI2.

RW/READY. If low cartridges are being written to. If high,
they may drive the system bus. On the Electron, this is a
CPU wait state control (open collector), a totally different
function.

A7 : On the M128 only, this line is buffered for 125ns after
PHI2 goes low. Accordingly it is known on the M128 as BA7
~NMI : Active low 6502 non maskable interrupt line.

A6 : BA6 on the M128.

~IRQ : Active low 6502 interrupt request line.

A5 : BA5 on the M128

~INFC : If low this means that (a) the cartridges are selec-
ted as internal 1 MHz bus, and (b) the processor is accessing
JIM (&FCO00-&FCFF).

A4 : BA4 on the M128

~INFD : As 14a, but for FRED (&FD00-&FDFF).

A3 :BA3 on the M128

ROMQA : This is set to the logical value of b0 of ROMSEL.
A2 :BA2 on the M128

CLOCK : A 16 MHz input, which on the M128 only, can be
changed to 8 MHz by moving PL6.

Al:BA1 on the M128

~ROMSTB/~CRTCRST : On the M128 only, this is active low
signal compatible with the system CRTC reset input. On the
Electron, it’s an active low signal which selects &FC73,
which can be a paging register.

231

Master Operating System : A Dabhand Guide

18b A0 : BAO on the M128

19a ADOUT : The filtered output of the sum of all audio inputs to
the host computer. Only a nominal load should be placed on
this line.

19 DO

20a AGND: Return for 19a, which is cleaner than system ground.

20b D2

21a ADIN : Audio output from cartridge to M128, which will of-
fer 1kOhm impedance. This will go direct to M128 audio cir-
cuitry. NB: Do not fit two cartridges which generate audio
output. On the Electron, this pin is merely wired to 21a on
the other socket.

2lb D1

22a 0V:System Ground.

22b Connected to 22a.

(~ is NOT, an active low line, written with an overhead bar in some

texts).

Master Compact

The Master Compact has a 50-way edge connector, which is part of
its PCB, and offers many of the signals found on the M128 cartridge
port. However, ~CSYNC, CRTC, 16MHZ, ~RST, -5V, ANOUT, AGND
and SPEECH are missing, the last four being absent from the Compact
hardware. Added to the connector are SCREEN (0V), and PB5, PB6é
and PB7 from the User Port, the other bits of the User Port being
available on the joystick port—see Appendix I. On the Compact edge
connector, side A is the underside and Side B is the visible side.

Pinout List

232

Pin Side A Side B

1 0V Screen 0V Screen
2 +5V +5V

3 AT13 A10

4 ~RST CD3

5 AAl5 All

Appendix H
6 A8 A9
7 Al13 CD7
8 Al2 CDé6
9 PHI2 OUT CD5
10 NC CD4
11 NC LPSTB
12 BR/~W BA7
13 ~NMI BA6
14 ~IRQ BAS5
15 ~INFC BA4
16 ~INFD BA3
17 AAl4 BA2
18 ~8MHZ BAl
19 ov BAO
20 PB7 (USER 6522) CDO
21 PB6 (USER 6522) CD2
22 PB5 (USER 6522) CD1
23 Removed for polarisation cutout
24 ov ov
25 0V SCREEN 0V SCREEN
233

B e L

Master Operating System : A Dabhand Guide

I : Compact Analogue Emulator

The Master Compact differs from the previous BBC Microcomputers
in that there is no analogue to digital converter, and thus proportio-
nal or analogue joysticks won’t work. Instead, a socket is provided for
‘Atari-compatible’ joysticks, which are switched. There are five
switches, left, right, up and down, and fire. As the switches are se-
parate, it is possible to switch more than one of them on at once.
Many joystick units allow this, providing eight directions of move-
ment. The connections on the 9-way D-type plug are given in Appen-
dix J. The connections are actually made to the MOS using the User
Port, mapped at &FE60.

To provide compatibility with previous analogue joysticks, MOS
5.00 onwards provides emulation of the original analogue code. Here
are details of how each call relating to the analogue system is hand-
led.

Pointing device service call

On powering up the Compact, the CB1 and CB2 interrupts from the
User VIA are enabled, and a service call &2C is issued by the MOS
every 20ms. For details of this call see Chapter 6. The call allows
you to write your own code to control a pointer.

OSBYTE &04 (4) Cursor key state
A new option *FX4,3 is provided. Full details are given in Chapter 4.

OSBYTE &10 (16) Write number of channels.

This is a totally artificial system, but it pretends to let you select
different channels. Unlike the real system, the default number of
channels is 2, and amazingly, you can set any number up to 128 chan-
nels. OSBYTE &BC will happily return over 100 different numbers
constantly changing!

OSBYTE &11 (17) Write next channel to be sampled.

Again this is artificial, but you can write a channel number between 1
andthe maximum set to by OSBYTE &10, and OSBYTE &BD will re-
turn it.

234

gt L

Appendix 1

OSBYTE &80 (128) Return analogue data.

This call, which is equivalent to ADVAL in BASIC returns values com-
patible with analogue systems (including fixed values if b5 on OS-
BYTE &BE set), as follows:

ADVAL(0) high byte : last channel to convert (artificial value for
compatibility).

ADVAL(1) X co-ordinate in the range 0-&FFFF. This value also re-
turned by ADVAL(3) and ADVAL(5)

ADVAL(2) Y co-ordinate in the range 0-&FFFF. This value also re-
turned by ADVAL(4) and ADVAL(6).

ADVAL(7) and ADVAL(8) also return the X and Y positions, but if
the sprite pointer ROM is fitted, it takes over these two
functions, and returns the position of the pointer.

OSBYTE &BC (188) Read currently converting channel.

This returns a number between 1 and the maximum set by OSBYTE
&10. It displays a range of numbers decrementing from the maximum
to 1, although this is purely set up by the MOS, and has no meaning,.

OSBYTE &BD (189) Read max. ADC channel number.

This returns the number set by OSBYTE &11, however meaningless
that number may be.

OSBYTE &BE (190)

On earlier machines this was used to switch between fast 8-bit con-
version and accurate 12-bit conversion, and to read the current sett-
ing. This is irrelevant in an emulation, and the call is used for an en-
tirely different purpose.

Entry: X=bit value (see below):Y=0
Exit : X=0Id value

or

Entry: X=bit value (see below):Y=255
Exit : X=Current setting

b7 If set, do not update ADVAL values from digital joystick or
cursor keys. This allows a sideways ROM etc. to handle it
instead. If b7 clear, update as normal.

235

-

Master Operating System : A Dabhand Guide

b6

236

1=Key value(s) are entered into the keyboard buffer accord-
ing the ADVAL(0) (low-byte) setting (see OSBYTE &80
above). If bits are set, the values entered are:

bit Device ASCII Key

b7 Right &89 Cursor right
b6 Up &8B Cursor up

b5 Down &8A Cursor down
b4 Left &88 Cursor left
b3 Right button =~ &7F Delete

b2 Middle button &0D Return

bl Left button &87 Copy

b0 Fire (Joystick) &87 Copy

Note that the emulation does not extend to key numbers, so

PRINT INKEY-58
will return -1 if the cursor up key is pressed, but 0 if the joy-
stick up switch is being held. b0 is only applicable to a joy-
stick, b1-3 are only applicable to a mouse/trackerball,

although of course you could build your own device which
used both.

If set, ADVAL 1 and 2 return fixed numbers as follows:

ADVAL1 Left switch on=&FFFF
Neither horizontal switch on=&7FFF
XRight switch on=0

ADVAL?2 Down switch on=&FFFF
Neither vertical switch on=&7FFF
Up switch on=0

Some games need the analogue emulation, but many respond
better with the fixed numbers. An option has been provided:

*CONFIGURE PROPORTIONAL
will permanently set up the analogue emulation, and
*CONFIGURE SWITCHED

will set up these fixed results.

' L Lt

b3-0

Appendix I

Not used, but unused for compatibility ie so that *FX190,12
can be issued.

Analogue speed feature. The Compact can emulate an analo-
gue joystick. These bits set the sensitivity of the emulation -
how quickly the MOS changes values in response to a stick
movement. A value of 1is a slow or sluggish emulation. A
value of 7 is very fast . There is a permanent setting of this
available with the new *CONFIGURE STICK command,
which takes a parameter between 0 and 15. Values 0, and 8-
15 actually assume the default value, which is that selec-
ted by *FX190,3.

Low Level Access - The User Port

You can bypass the operating system and read the joystick switches
directly from the user port at &FE60. To do this, the data direction
register (DDR) at &FE62 must be set so that the port is configured for
input. This is done by loading it with 0. All the bits are set to 1, and
change to 0 when the various switches are closed as follows:

b7
b6
b5
b4
b3
b2
bl
b0

Not affected by joystick port.

Not affected by joystick port.

Not affected by joystick port.

Joystick right/mouse y-axis movement.
Joystick up/mouse x-axis movement.
Joystick down/mouse right button.
Joystick left/mouse middle button.
Joystick fire button/mouse left button.

Listing 1.1 is a simple program to print out the value of the bits on
the User Port. Run this with a joystick or mouse plugged in. Listing
1.2 allows you to use the joystick with games that normally only
have keyboard input provided that they use the negative INKEY
system of reading keys, as most do. Also, the code must be assembled
somewhere that the game is not using. I have used &900, RS5232 buff-
er workspace, but if your game uses this area, you’ll have to try
somewhere else.

237

Master Operating System : A Dabhand Guide

Listing I.1

10 REM Joystick/Mouse test

20 REM {(c) Dave Atherton 1987

30 REM for Compact only

40 REM (or B/B+/M with mouse/trackerball)
5 REM MOS: A Dab Hand Guide

70 MODE 7

8 VDU23,1;0:;0;0;0;

90 ?&FE62=0
100 PRINTTAB (6, 8)“User Port :”
110 REPEAT
120 PRINTTAB (18, 8)FNbinary (?&FE60)
130 UNTIL FALSE

140 END
150
160 DEF FNbinary (X%)

170 LOCAL I%,A$

180 AS$=""

190 FOR I%=7 TO 0 STEP-1 -~
200 AS=AS$+CHRS (48+SGN (X% AND 2°1%))
210 NEXT
220 =AS

Listing L1 - Joystick/Mouse test

Listing I.2

REM Joystick Key Emulator
REM (c) Dave Atherton 1987
REM for Compact only

REM MOS : A Dabhand Guide

bytev=&20A
Zp=&AF
opt=2
M%=&900
FOR pass=0 TO 3 STEP 3
PR=M%
[OPT pass
.patch
PHP
P #129 \ Is it INKEY
BNE notus
170 CPY #&FF \ Is it ~ve INKEY

|
238 j

BBIBEEBYE

—
o
(=)

Y el
D W N
Sbodoo

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

Appendix I

BNE notus

PHX

JSR bytecal \ Get key value
STX zp-1 \ Store it
PLX

LDA #0

STA zp

TXA

DY #0

SEC

. loop

ROL zp

CMP keys,Y \ Check keys
BEQ found

INY

CPY #6

BNE loop

\ Not one of our keys

LDY #&FF \ Reload values
IDA #129

BRA notus \ and exit

. found
LDA #&1F
TRB &FE62
LDA &FE60
AND zp
PHP

LDA #0
PLP

BNE exit
DEA

.exit
ORA zp-1 \ OR with key.
TAX

TAY

LDA #129
PLP

RTS

.return

PLP

.notus

PLP

.bytecal
JMP (bytev2)
.keys

EQUB -74
EQUB -98
EQUB -105
EQUB -73
EQUB -67

P
> o* 0 N

239

Master Operating System : A Dabhand Guide

240

690
700
710
720
730
740
750
760
770
780
790
800
810

.bytev2

EQUD 0

]NEXT

'bytev2=!bytev

?bytev=patch MOD 256

bytev?1l=patch DIV 256

PRINT “Testing for negative INKEY”
PRINT” (or joystick equivalent)”
REPEAT

FOR I%=1 TO 127

IF INKEY-I% PRINT”Detected INKEY -";I%
NEXT

UNTIL FALSE

Listing 1.2 - Joystick key emulator

J : Connector Pinouts

This Appendix lists the pinouts of the new hardware ports on the
Master Series micros. The Master Series cartridge ports are covered
in Appendix H.

Master 128

The Master 128 has all the ports provided on the Model B fitted as
standard. Additionally there are cartridge ports, and an internal
Tube and internal modem connector.

Pinouts: Internal Tube Connector

There are two 12-pin sockets, SK1 and SK2, SK1 being the rightmost
of the two on the PCB.

Pin SK1 SK2

1 0V decoupled 0V decoupled
2 +5V decoupled 0V decoupled
3 CD7 0V decoupled
4 CD6 +5V decoupled
5 CD5 +5V decoupled
6 CD4 ~INTUBE

7 CD3 ~RST

8 CD2 02IN

9 CD1 A0

10 CDO Al

11 8MHZIN A2

12 ~IRQ BR/~W

Internal Modem Connector

There are two connectors, PL10, a 5 pin in-line socket and PL12, a 20
pin in-line socket. The pins are situated in a way that the connec-
tions physically support the modem board itself. The pins on the
two associated plugs (PL10 and PL12) have the following functions:

MOS—P 241

Master Operating System : A Dabhand Guide

PL10
Pin Function
1 Speech out
2 MAN out s
3 Analogue ground
4 Key way connector
5 Soundin -
PL12
Pin Function -
1 ~IRQ line from processor
2 ~RST line from processor o
3 Buffered DO
4 Buffered D1
5 Buffered D2 i
6 Buffered D3
7 Buffered D4
8 Buffered D5
9 Buffered Dé6
10 Buffered D7
11 ~MODEM active low select line
12 AQ : Fixed hardware addresses in SHEILA)
13 Al :so only four address bits needed.
14 A2 -
15 A3
16 1 MHZE
17 R/~W
18 +5V decoupled
19 -5V

242

g g

Appendix J

Master Compact

The Master Compact has RGB Video and Composite Video (phono
socket) as fitted on the BBC Micro. Econet and RS232 sockets are fit-
ted although the hardware is an optional upgrade. There are no
Tube, 1 MHz bus, or Cartridge connections. There are four new connec-
tors: the disc interface, printer connector, digital joystick, and expan-
sion connector. The first two are electrically similar to earlier mac-
hines, but use different connectors. The other two more or less replace
the User Port and Cartridge sockets, but again, the connectors are dif-
ferent. The edge connector is detailed in Appendix H.

New Disc Interface Connector: 25-way D-Type
Pin Signal

~INDEX

~DRIVE 0

~DRIVE 1

~DRIVE 2 (NC if PL3 is open)

~MOTOR ON

~DIRECTION

~STEP

~WRITE DATA

~WRITE GATE

~TRACK 0

~WRITE PROTECT

~READ DATA

13 SIDE SELECT

14-25 0V

O 0.3 O O b W N =

_
N = O

New Printer Connector: 24-way Amphenol

Pin Signal
1 Strobe
2 D0

243

Master Operating System : A Dabhand Guide ko

D1

D2

D3

D4 el
D5

Dé

D7

10 ACK

11-12 NC

13-24 0V Ground

O 00NN G e W

Digital Joystick Port: 9-way D-type socket
Pin Signal

PB3

PB2

PB1

PB4

CB1

PBO

+5V

0V Ground

CB2/LPSTB

O 0O N N G W N

Notes: LPSTB is supplied if link PL7 is made. The logic lines are all
from the User Port.

244

g g g gL

K : The Programs Disc

A disc of programs is available from Dabs Press containing all the
programs listed in this book, plus several others, including a whole
memory editor, a complete sideways utility ROM image (which you
can run from sideways RAM or program into an EPROM) and much
much more!

This is what you get:

* Shadow RAM teletext saver

* Sideways RAM screen saver

* Example programs for OSCLI, OSWORD etc.

* Disc sector ID reader (DFS)

* ROM copier and saver to disc

* On-screen Master clock

* Econet *SET utility - single program for Compact and Master
* Compact EEPROM version of the CMOS RAM editor
* All the listings in this book

* A sideways ROM utility pack

* Whole memory editor

* Useful manual of instructions

* Status display program

* 640 x 512 display program

Most of the programs are written in 6502 assembly language, and all
of them are provided as readable source code, often with
documentation in the listings.

The disc is available for the BBC B, B+ and Master 128 in 40 track
5.25in DFS format for just £7.95. A copy program will allow you to
convert the disc for use with an 80 track drive. The software can also
be transferred to Econet or a hard disc. It is also available in 3.5in
ADFS format for Master 128 and Master Compact for £9.95. The disc
is not copy-protected, and comes in a handsome illustrated plastic
wallet with full instructions. The price is inclusive of VAT in the UK

245

Master Operating System : A Dabhand Guide

and postage and packing. For orders abroad there is no VAT, but the
price is the same to cover the higher postage.

To obtain your copy of the disc then use the order form below, or a
copy of it or a letter, and send it with a cheque or postal order or ster-
ling money order to Dabs Press at the address below. Government,
education, and companies may send an official order. Dealer en-
quiries are welcome.

-
Please rush me a copy of the Programs Disc to accompany David

Atherton’s MOS Dabhand Guide. I require the following version (please
delete as required):

5.25in DFS (£7.95) / 3.5in ADFS (£9.95)

..

I enclose a cheque/PO foroivininnnnnen. NO....eenees
Please charge my Access/Visa card no.

Tick here if you require a VAT receiptccccemueunnnee.

Send to : Dabs Press 76 Gardner Road Prestwich
Manchester M25 7HU.

246

L : Guide to Dabhand Guides

The following Dabhand Guides and software packs covering the BBC
and Master series micros are published or planned for 1988. Leaflets
are available on all these products which go into considerably more
detail than space here permits. Publication dates and contents may
be subject to change. All quoted prices are inclusive of VAT (on soft-
ware -books are zero-rated), and postage and packing.

VIEW: A Dabhand Guide by Bruce Smith

ISBN 1-870336-00-3

Publication : Available Now. 248 pages.

Book: £12.95. Disc: DFS 5.25in £7.95 ADFS 3.5in £9.95. Book and disc
together £17.95 (ADFS £19.95)

This is the most comprehensive tutorial and reference guide written
about using the VIEW wordprocessor. Both the beginner and the more
advanced user will find it to be an invaluable companion whether
writing a simple letter or undertaking a thesis. In addition a suite of
VIEW utility programs are provided including, VIEW Manager, an
easily extendable front end. Thorny subjects such as macros, page lay-
out and printer drivers are revealed.

ViewSheet and Viewstore: A Dabhand Guide
by Graham Bell

ISBN 1-870336-04-6

Publication : January 1988. 280 pages

Book: £12.95. Disc: DFS 5.25in £7.95 ADFS 3.5in £9.95. Book and disc
together £17.95 (ADFS £19.95)

Written by Acorn User’s Graham Bell this book is a complete tutor-
ial and reference guide for the Acornsoft ViewSheet spreadsheet and
the ViewStore database manager. It is specifically written to ap-
peal both to the beginner and to the more knowledgeable user,
whether you wish to double-check your bank statement or run a mil-
lion pound business. Every aspect of setting up and using a database
or spreadsheet is described in detail, and numerous examples are pro-
vided to guide you. There are also a number of utility programs to
help you get more out of the VIEW family, including programs that
join two databases together and help transfer spreadsheets into a
word processor.

247

Master Operating System : A Dabhand Guide

Bumper Assembler Bundle by Bruce Smith

Publication : Available Now
Two books, two discs and booklet: Just £9.95

If programming in machine code is just wishful thinking, here is the
chance for you to explore this fascinating subject with our Bumper
Assembler Bundle. We are able to bring to you a five-part package of
assembly language materials at less than a third of their normal
price - all from the prolific keyboard of BBC expert, and former
Acorn User Technical Editor Bruce Smith. Here’s a summary:

1. BBC Micro Assembly Language is an excellent 200-page introduc-
tion and tutorial guide to 6502 assembly language programming. A se-
parate edition is also available for the Acorn Electron. Normal price
is £7.95.

2. A DFS format disc packed with 60 (yes sixty!) programs from the
book BBC Micro Assembly Language.

3. BBC Micro Assembler Workshop is the companion volume and fol-
lows on from where BBC Micro Assembly Language leaves off. Its 160
pages contain programs such as a super fast machine code sort, and a
machine code disassembler. Normal Price of this book is £6.95.

4. A DFS format disc packed with 30 programs from the book BBC
Micro Assembler Workshop.

5. A booklet detailing all the new chip commands and innovations
supplied with the Master 128 and Master Compact that have come
to life since the above books have been published.

All together this bundle would cost you over £30. We can offer it to
you at an exclusive price of just £9.95 including P&P and VAT. An ADFS
version of the two discs is also available at the same price.

FingerPrint by David Spencer

Publication : Available Now
Disc and manual - DFS version £9.95, ADFS version £11.95

FingerPrint is a single-step machine code tracing program. It allows
you to step through machine code written by yourself, part of a com-
mercial program, or even the operating system, examining and exec-
uting each instruction, and displaying registers and flags at every
stage. FingerPrint will even trace code situated in Sideways
RAM/ROM— watch and learn how BASIC works for instance!

248

L
5

Appendix L

MOS Plus by David Spencer

Publication: Available now
ROM £12.95, Disc for Sideways RAM £7.95 (3.5” £9.95)

A useful ROM for all Master 128 users providing ADFS *FORMAT,
*VERIFY , *BACKUP, *CATALL and *EXALL in ROM (you can put away
that Welcome disc), and some new “* commands such as *FIND
which finds a file anywhere on an ADFS disc. A complete alarm
system is present using the Master 128 alarm facility, as is an AMX
mouse driver. The ROM also fixes the infamous DFS *CLOSE bug.

SideWriter by Mike Ginns

Publication: Available now
5.25"” disc £7.95, 3.5” £9.95

For Master Series owners, and BBC owners with Sideways RAM, a
pop-up notepad which can be used from within any application.
Simply press SHIFT-CTRL-TAB and your program is suspended and
you’re in SideWriter ready to make a note. Press TAB and you're back
with your application screen exactly as you left it. Notes taken in Si-
deWriter can be saved to disc, transferred to a word processor, or
printed out.

Archimedes Assembly Language: A Dabhand Guide
By Mike Ginns
ISBN 1-870336-20-8

Publication: March 1988 300pp approx.
Book : £14.95, 3.5” disc: £9.95 Book and disc together £21.95

This book shows you how to get the most from the remarkable new
Archimedes micro by programming directly in the machine’s own
language - machine code. This book covers all aspects of machine
code/assembler programming for all Archimedes machines.

For those who are totally new to assembler programming, the book
contains beginners sections which take the reader step by step
through topics such as binary numbers, and logic operations.

To make the transition from BASIC to machine code as painless as
possible, the book contains a section on implementing BASIC com-
mands in machine code. All of the most useful BASIC statements are
covered.

249

I

i

Master Operating System : A Dabhand Guide

Conversion Kit by Bruce Smith

ISBN 1-870336-06-2
Available now. Software pack with 16pp manual
DFS version £7.95 ADFS version £9.95

One of the most difficult aspects of machine code programming is
writing routines to convert from one base to the other. How many
times have you wished you could take a two byte binary number and
print it to the screen as a five digit decimal number? Or perhaps you
have longed for a routine that will do the reverse. All these
problems, and many more are solved by the Conversion Kit, a disc
containing 24 expert routines that you can use in your own programs.
Each routine is held within a BASIC and assembler program as a
procedure that demonstrates how to use it.

Master Emulation ROM by David Spencer

ISBN 1-870336-23-2 Available now
Software pack in ROM £19.95 (Disc for Sideways RAM £14.95)

This new ROM software is especially for Model B and B+ owners,
and provides you with most of the features of the Master 128, such as
the new ¥ commands, the extended filing system operations includ-
ing the temporary filing system, the *CONFIGURE system (using
battery-backed Sideways RAM and/or a disc file), and if you have
the hardware, Sideways or Shadow RAM. The only Master Operat-
ing System software not covered in this ROM is the extended gra-
phics software. With this ROM you’ll be able to use the new features
documented in the Master Operating System, and for third-party
shadow and Sideways RAM users, run some programs which are
normally only intended for Masters.

The ROM recognises most popular types of Sideways RAM including
Solidisk 16/32/128k boards, Solidisk 2 Meg/4 Meg 256k boards, all
single-chip plug in types, and BBC B+128k. Watford and Aries
boards are recognised by the Shadow RAM control software.

Hyperdriver by Robin Burton

Available: Jan 88
Software pack in ROM £29.95 (Disc for Sideways RAM £24.95)

Hyperdrive is the ultimate printer utility ROM for word processor
users. Unlike other ROMs, which are mostly graphical in nature,

250

(T O O O (O (o (R (R R

l

i g gt L

Appendix L

Hyperdrive concentrates on text features, using simple “* commands
to control page length, margins, tabs and of course, text effects such as
bold, italic, underlining and so on. These commands can be issued dir-
ectly from languages such as BASIC, or embedded into wordprocessor
files such as those created by Wordwise and InterWord.

When used with VIEW, the ROM really comes into its own. All the
“+ commands are available in the form of a special VIEW Printer
Driver. Microspacing is supported. Also, additional macro sequences
are available, where a complex printer command may be defined in
terms of a numbered definition, which can then be invoked anywhere
in the document.

The ROM includes an on-screen effects generator, an inbuilt NLQ font
and printing using screen defined characters.

C: A Dabhand Guide by Mark Burgess

ISBN 1-870336-16-X (Programs Disc 1-870336-22-4)
Available March 1988 300pp approx.
Price: £14.95

This is the most comprehensive introductory guide to the C pro-
gramming language so far written, giving clear and comprehensive
explanations of this important programming language. The book is
packed with example programs, making use of all of C’s facilities.
Unique diagrams and illustrations help you to visualise programs
and to think in C. Assuming only a rudimentary knowledge of com-
puting in a language such as BASIC or Pascal you are provided with
a grounding in how to build up programs in a clear and efficient way.

To help new users, a complete chapter on fault finding and debugging
helps you to trace and correct both simple and complex errors.

Please note: All future publications are in an advanced state of pre-
paration. Content lists serve as a guide but we reserve the right to al-
ter and adapt them without notification. If you would like more in-
formation about Dabs Press books and software then drop us a line at
76 Gardner Road, Prestwich Manchester M25 7HU, and we'll de-
spatch our latest Dabhand Guides Guide.

251

Glossary

Here is a list of the computer jargon words used in the book, plus a
few other words commonly met in BBC Micro literature.

ADC Analogue-to-Digital converter. A chip (number uPD7002) fitted
as standard to the Model B/B+ and Master 128 to convert variable
voltages into digital values. There is no ADC on the Compact.

ADLC Advanced Data Link Controller. A chip (number 68B54) fitted
as part of the Econet upgrade, which controls Econet signals to and
from the machine.

AIV Advanced Interactive Video. The important difference between
AIV and ordinary Interactive Video, is that the former can deal with

analogue television pictures, and digital data at the same time.

ANDY The name given by Acorn to the 4K of RAM, mapped from
&8000 to &8FFF, used by the MOS to store key definitions, etc.

Assembler A program contained within BBC BASIC which converts
assembly language into machine code.

Assembly language A computer language vaguely like English that
has a direct correspondence with machine code. One assembly langu-
age instruction will translate to one machine code instruction.

bank A section of memory in a paged memory system. Sometimes also
called a slot or page.

BASIC 4 The Master Series version of BBC BASIC. In addition to all
the features found in BBC BASIC versions 1,2 and 3 (US BASIC),
there are many new features such as EDITOR entry and TIME$.

BASIC 40 The standard Master Compact BASIC, also supplied with
later Master 128 models contain MOS 3.22 or later. This is similar to
BASIC 4 but contains vastly improved function evaluation resulting in
higher floating point speeds.

baud This is a communications term meaning bits per second. A 1200
baud modem will transmit data at 1200 bits per second, which is
about 120 characters (An 8-bit character transmitted down a tel-
ephone line requires two or three extra bits to cope with transmission
errors).

252

{

T O 0

Glossary

BCD Binary coded decimal. A system whereby the processor works in
decimal, ie, adding one to &89 will produce &90 and not &8A. The
system is used to facilitate control and display of numbers up to 99.

bit A binary digit. A group of 8 bits is known as a byte.

buffer In software, an area of memory which temporarily holds data
which is being produced by one source, but cannot yet be handled by
the eventual destination - for example a printer.

Bus A set of wires containing a number of computer digital signals »
which are usually useful together, for example an address bus would
contain 16 wires, each with one bit of an address.

CMOS Complementary Metal Oxide Semiconductor. A chip manufac-
ture technology, which usually produces integrated circuits which
run at very low power, but not as quickly as other technologies. In
this book CMOS is only referred to as (a) to identify non-volatile
RAM as opposed to normal RAM, and (b) to identify the advanced
65C02 CPU as opposed to the older 6502.

contiguous This word appears a lot in computer literature. It means
‘next to each other’. For example, if 1024 bytes of memory are reser-
ved for a buffer, it will usually necessary for this to be contiguous, ie
all 1024 bytes follow each other in memory. DFS and ADFS files are
said to occupy ‘contiguous’ disc space, whereas network files do not.
This means that if the first 256 bytes of a file are on Sector 5/1 of a
disc, you can guarantee that the next 256 bytes will be on Sector 5/2
and so on. On the network, and on disc filing systems such as CP/M,
you cannot guarantee this.

CSD The currently selected directory.
CSL The currently selected library.
decrement This means ‘subtract 1 from’

directory A special file (on DFS a fixed place on disc) containing in-
formation about other files, specifically their name, length, load
and execution addresses, and the address of the sectors where the
file data is stored on the disc.

Econet The proprietary name of Acorn’s local area network. This is a
system where several computers are cabled together and data can be
transferred between them. One disc drive and one printer can be

253

Master Operating System : A Dabhand Guide

shared by every machine on the network, and data can be transferred
between computers (known as stations)

EEPROM Electrically Erasable Programmable Read Only Memory.
This is like an EPROM in that it retains data while the computer is
off. Unlike an EPROM it can be altered while fitted to the computer.

EPROM Erasable Programmable Read Only Memory. A device
which acts like a ROM but can be wiped and filled with different
data using low-cost equipment known as EPROM erasers and EPROM
programmers. Erasure involves exposing the EPROM to ultraviolet
light. Programming involves applying a higher voltage than normal
(typically 21 volts) to the EPROM. So while the EPROM is fitted to
the computer it cannot be erased or programmed but will retain data
when the computer is off.

F-Codes Control codes to drive a Laservision player

FDC Floppy Disc Controller. This is the complex chip (Intel 8271 or
WD1770) provided to handle disc drive operations.

FIFO First-in First-out. A buffering system where, as the name im-
plies, the earlier items buffered reappear before the later ones. Most
normal 1/0 device buffers are FIFO.

HAZEL The name given by Acorn to the 8K of RAM, mapped from
&C000 to &DFFF, used by the MOS, ROMS and filing systems as pri-
vate workspace.

IEEE This usually means IEEE488, which is a standards paper
(No.488!) produced by the Institute of Electrical and Electronic Eng-
ineers. The interface standard is very popular in the laboratory
although its use in business computers is declining.

1/O Input / Output. A computer does its work in the CPU, but only
through the 1/O section can we humans know what is happening. For
example screen, printer, sound and disc are output. Keyboard, joystick
and disc are input.

increment This means ‘add 1 to’.

JIM The name given by Acorn to locations &FDQ0 to &FDFF on the
1/0O processor. These locations are not RAM but in fact 1 MHz bus I/O
lines.

g {

Glossary

Joystick An input device, principally designed for moving a cursor or
other object round the screen. The device usually consists of a lever
which can be moved forwards and backwards and left and right,
with a button (called ‘fire’ from games usage). On machines other
than the Compact, the device is analogue i.e. the stick movement is
measured by potentiometers connected to the A-D port. On the Com-
pact, the device is digital and stick movement is measured by mak-
ing switches.

Language processor This term means the co-processor in a two pro-
cessor BBC Micro environment.

library A special type of directory, for machine code programs.
*RUN "filename” will look in the CSL before the CSD, to find the re-
quired file.

LIFO Last-in First-out. This is a buffering system where the later
items are retrieved first. This is not very useful for a I/O buffer, but
ideal for a program stack, as used in general subroutines and particu-
laraly in recursive work.

LVROM This is the name given to a digital 12in videodisc, such as
that supplied with the BBC Advanced Interactive Video System.

LYNNE The name given by Acorn to the 20k of screen RAM from
&3000 to &8000, also referred to as the shadow screen.

Master Sequence Number A number stored on a disc which is incre-
mented by one every time the disc or directory is written to.

Modem A device which convert computer signals into audio tones for
transmission along speech telephone networks. The device also con-
verts the tones into signals ie it can transmit and receive. If two users
have compatible modems they can transfer data between their com-
puters via the telephone.

MOS Machine Operating System. See OS

Mouse A small box containing a rubber or steel ball which is rolled
along a flat surface. A wire is connected to a port on the computer.
Movement of the mouse causes signals to be sent to the computer
which can be interpreted, say, as cursor movement.

NMOS Negative Metal Oxide Semiconductor. Another chip technol-
ogy offering high density (ie a lot on a small chip). Most major com-
ponents on the BBC Micro use this technology.

255

Master Operating System : A Dabhand Guide

object In the context of this book, this term means ‘a file or a dir-
ectory’. When you say that ADFS can hold 47 objects in a directory,
this means a total of 47 files OR sub-directories.

Operating System A computer program which deals with all the
fundamentals of operating the computer - detecting keypresses, putt-
ing characters on the screen, loading and saving files (shared with
the Filing System), generating sound, colour and graphics, and other
useful features. Access to the operating system on Acorn machines is
provided by a group of documented calls with entry points in page
&FF.

OSHWM Operating System High Water Mark. The first free loca-
tion in memory after the Operating System, and any other firmware
such as filing systems have claimed workspace memory. The operat-
ing system normally leaves OSHWM at &0E00. On machines other
than the Master series, the disc and network filing systems increase
this figure.

polling Most computers will access their various I/O devices from
time to time to see if anything needs to be done. Input devices may
have some new data. Output devices may be ready for more. The
process of checking the devices is known as polling.

Port A place on the computer circuit where outside connections can be
made. This will usually, although not necessarily, mean that a sock-
et is fitted also.

Printer A device which takes computer data and prints it onto paper
(or other flat material). The type of data generally printed is text.
This is the basis of word processing.

RAM Random access memory. Computer memory which can be read
from and written to.

relocatable If a machine code program is described as this, it means
that the program can be loaded into any memory area, and it will
run regardless.

reset To reset a bit means to load it with 0. See also set.

Rockwell The company that manufacture and market the R65C02 mi-
croprocessor. This chip contains the BBR, BBS, RMB and SMB instruc-
tions.

256

(L

Glossary

ROM Read Only Memory. An integrated circuit (chip) which con-
tains data or programs. The data or programs cannot be altered. They
are retained when the computer is off. The Acorn MOS and BBC BA-
SIC are contained in ROM in all Acorn computers.

RS232 A specification number. The specification in question was a
(successful!) attempt to define a standard for data transmission using
only 2 wires. R5423 is a later and more stringent specification of
which R5232 is a subset. The system essentially is that data is trans-
ferred at a known and fixed rate (9 speeds are available), by chang-
ing the potential on one wire from +12v to -12v with reference to the
other.

RTC Real Time Clock.

R/W stands for Read /Write. It usually means that a port can be read
from and written to, unlike some which are read-only, or write-only.

SCSI Small Computer Systems Interface. A general interface stan-
dard much used for interfacing computers to large capacity storage
devices such as hard discs and videodiscs. Also known as SASI

SERPROC A name given by Acorn to their serial ULA. This controls
the RS232 and cassette ports.

set To set a bit means to load it with a 1. See also Reset.

SHEILA The name given by Acorn to locations &FEOQO to &FEFF of
I/O processor memory. These locations are not RAM but in fact /O
ports.

skewing When discs are formatted, a technique can be used where lo-
gical sector zero of a track is not exactly aligned with logical sector
zero of the previous track, but is in fact two or three sectors adrift.
This means that after a disc head has read, say Track 0 Sector 9, and
wishes next to read Track 1 Sector 0, it can move its head across, and
immediately catch that sector—unlike exact alignment where the
head would usually miss the next sector, and thus have to wait for
the disc to spin one more revolution. This method of formatting discs
is known as skewing.

Teletext This is a term covering the broadcast videotex services of
the BBC (Ceefax) and IBA (Oracle). It is also common parlance for
the Mode 7/135 display mode on Acorn machines, as this is compat-
ible with the broadcast display (and Level 0 Videotex generally).

MOS—Q 257

Master Operating System : A Dabhand Guide

Trackerball A box containing a ball which can be rotated in all direc-
tions by the user. Rotation sends signals to the computer which are
usually interpreted as cursor movement instructions.

TTL Transistor Transistor Logic. A chip technology used for relative-
ly simple chips such as decoders, logic gates, counters etc. TTL chips
are much faster than CMOS and NMOS.

ULA Uncommitted Logic Array. A group of logic circuits which are
connected together in a way chosen by the computer designer. A
‘blank’ ULA is made, and then the particular design is laid onto it.
This is done for reasons of cost. There are two ULAs in BBC B/B+,
eight in the Master, and seven in the Compact.

VIA Versatile Interface Adaptor. Usually refers to the 6522 chips in
the BBC Micro. One is used to control much system I/0O, and the other
is used for the parallel printer port, and the user port.

VIDPROC A name given by Acorn to their video processor ULA.

Winchester A Winchester disc drive is sometimes also known as a
‘fixed’ or ‘hard’ disc, because the media is not removable from the
drive casing, and the disc itself is rigid. Although you cannot change
the media in a Winchester unit, the drives are of very high capa-
city. Acorn produce 10 and 30 Megabyte models.

The name Winchester comes from the project codename used by IBM
when they worked on this technology.

258

g g ' 't L L i L L

L L
Bibliography
Advanced Disc Investigator. R. Northen, Advanced Computer Products
1986.
Advanced Disc Toolkit. Rob Northen, Advanced Computer Products 1986.

Advanced Sideways RAM User Guide. Bruce Smith, Victory Publishing
1986.

Advanced User Guide for the Acorn Electron, Adder Publishing/ A cornsoft

Advanced User Guide for the BBC Micro. Bray Dickens and Holmes,
Cambridge Microcomputer Centre 1983.

BASIC ROM User Guide. Mark Plumbley, Adder Publishing 1984.
The BBC Micro ROM Book. Bruce Smith, Collins 1985

BBC Microcomputer System User Guide. John Coll, BBC Publications 1981,
Revised by Acorn Computers 1985.

Econet Advanced User Guide, Acorn Computers Ltd, Acorn 1983
Master Reference Manual Part 1. Acorn Computers Ltd, Acorn 1986.
Master Reference Manual Part 2. Acorn Computers Ltd, Acorn 1986.
Mastering Assembly Code. Richard Vialls, BBC Publications 1986
Mastering the Disc Drive. Chris Snee, BBC Publications 1986
Monitor (Software). Graham Bartram, BBC Publications 1985
R65C02 Data Sheet. Rockwell Instruments 1986

HD146818 Data Sheet. Hitachi 1986

259

Index

absolute addressing ... 28,29,79,94
ACCCON ... 42,95,96,99,153
access ... 13,14,112 -
accessing co-processor memory ... 135
action on reset ... 157,158
action on service calls ... 157
active filing system ... 152
ADC ...3444,67
address - absolute ... 79,94
- pseudo ... 79,94
addressing - absolute ... 29
- indexed ... 33
- indexed absolute indirect ... 43
- indirect zero page ... 43
- modes new ... 43
- pseudo ... 28,29,54
ADFS ... 7,14,15,16,17,18,19,20,22,24,30,61,83,85,91,99,120,147,149
ADFS changes ... 180 =
ADVAL ... 47,67
advising Tube OS of data transfer required ... 136
analogue emulation ... 67
ANDY ...91,97,134
ANFS ... 52,118,121,148
APPEND ... 14,153
ARGSV ... 111,154
ARM ... 132,137,176
ASCT ... 11,15,19,26,31,47,69,70,98,120 -
ATPL board ... 52
attributes ... 14
auto boot ... 111

back ... 14

BACKUP ... 15,112

Bad command ... 24,28,54,112

BASIC ... 15,34,91,95,105,135,141,172
-version1 ... 172
-version2...173
-version 3 ... 173
- version 4 ... 38,174
- version 40 ... 176
- version 5 ... 176

baud ... 30

BBR ... 33,36,40

260

Index

BBS ... 33,36,40

BCD ... 77,81

BRA ...37

BREAK ... 24,66,70,72,73,93,95,96,112,121,122,124,125
BRK ... 33,35,113,114

BRKV ... 123,124

BUILD ... 14,15,153

cambridge ring ... 88
cartridge ... 55
CAT ... 15,22,150,156
CDIR ... 16
CFS ... 19,22,23,61,62,66,147,156
changes ... 177
- ADFS ... 180
- DFS ... 180
- from original 6502 ... 34
- to edit ... 180
chip family ... 33
claiming and releasing the Tube ... 135
claiming the Tube ... 135
CLD...34
CLI.. 1121
Clock ROM ... 125
CLOSE ... 16,27,121
CMOS 8,17,30,33,34,63,76,77,125,161,
CMOS and EEPROM Memory Map ... 161
CMOS RAM Editor ... 165
CNPV ... 140
co-processor ... 32,33
- memory accessing ... 135
CODE ... 16,23,135
COMMANDS ... 13
Compact Analogue Emulator Appl
compatibility 7
CONFIGURE ... 17,31,73,112,161
connector pinouts App]
COPY ... 17
Country Flag ... 71
CP/M. ... 25,88,132
CRC...32,8487
CREATE... 17
CRLF...25
CSD ... 14,18,22,23,24,111,156
CSL ... 22,23,24,156
current filing system ... 152

261

Master Operating System : A Dabhand Guide

Dabhand Guides AppL
date ... 76
DEA ... 37,126
DECA .37
Decimal Flag ... 33
DELETE ... 17,18,25
deselecting temporary filing systems ... 159
DESTROY ... 13,18
DFS 7,12,15,16,17,18,19,20,23,30,31,32,54,86,99,132,147,151
- changes ... 180
differences ... 172
Directory ... 17,30
DISC ... 13,18,22,120
- changed ... 18
DISK see DISC
DISMOUNT ... 18
DRIVE ... 19
DUMP ... 19
dynamic workspace
-inHAZEL ... 119
- requirements ... 119

Econet see Net

EDIT changes ... 180

EEPROM 8,17,30,63,121,163,163
Electron ... 20,22,50,56,57,58,67,90,95,96,132
ENABLE...19

EOF... 149

EPROM ... 92,105

EQUB... 36

ESCAPE ... 14,15,19,59,134
EX...19,22,150,156

EXEC ... 19,23,117,150

execution address ... 26
extended vector ... 124

f-code ... 82,83
FADFS ... 20,24
FILEV ... 111
Filing System ... 123,147
- active ... 152
- change ... 117
- current ... 152
- handler ... 152
- information ... 120, ... 160

262

- library ... 152,156
- restart ... 118
- ROMS ... 123
- temporary ... 151
FINDV ... 111,154
Flag - Decimal ... 33
font implosion ... 117
FORM ... 20
FORMAT ... 20
FRED ... 98
FREE ... 20,84
frugalising ... 93
FSCV ... 140,150,153,155,156
FX..12,20,21
FX..2003 ..24

GO...21,60

GOIO ... 16,21

GSINIT ... 140
GSREAD ... 25,27,31,140

handle ... 150,156
HAZEFL ... 24,80,91,93,97,118,119,123,152
HELP ... 21,115,123
- interactive ... 118
hex ... 19,24
hierarchical directories ... 18
high order addresses ... 99
HIMEM ... 16,60,80

I option ... 28,93

/0 - memory from the co processor ...
- port...35
- processor ... 135

ID marks ... 32

IEEE ... 88

IGNORE ... 21

INA ...38,126

INC...34

INCA..38

indexed absolute indirect addressing ... 43
indexed addressing ... 33

indirect zero page addressing ... 43

INFO ... 13,19,22,150,156

initialise ROM ... 28

INKEY ...58

134

Index

263

Master Operating System : A Dabhand Guide

INSERT ... 22,31

INSV 54.140
interactive HELP ... 118
interrupts ... 113,136

IRQ ... 142 oy
JIM ... 98
JMP ... 34,37,43,149
joystick ... 47
KEYV ... 140
language ... 123
- entry point ... 106
-ROM ... 108,123
- startup ... 122
LCAT..22
LDA ... 22,23,35,43,56
LEX..22
LIB...23
LIBFS ... 22,148

library ... 22,23,118
- filing system ... 152,156
LINE ... 23,135
LIST...2331,153
LOAD ... 21,23,26,149
-address ... 23,26
low level paging control ... 95
LVDOS - see videodisc -
LYNNE ... 55,91,97,98,99

Machine Operating System see MOS
Macintosh ... 10

making a disc image ... 92

MASM ... 38

Master ET 8

Master Series cartridges AppH
Megabit ROM ... 54

Memory Map AppD

MHz bus ... 55,97

Mode ... 56

Model A ... 72

modem ... 85

MOS 7,12,13,19,25,27,30,31,47,55,71,91,114

264

- calls App E

- commands ... 11
MOTOR ... 24,61
MOUNT ... 18,19,24,79,82
mouse ... 79
MOVE ... 24
MS-DOS ... 132
MSN ... 81,83,85

names explained ... 97

NET ... 16,18,22,30,51,52,68,78,79

NETV ... 140

network ... 15

new MOS calls ... 45

NFS ... 132,148,149, also see NET

NLE... 11

NMI ... 115,124,142

non maskable interrupt see NMI

Non-volatile RAM ... 161

NOP...137

Note - on unchanged OSBYTE calls ... 74
- for 6502 co processor programs ... 140

numeric keypad ... 73

opcodes ... 33

Operating System see Machine Operating System

OPT ... 25,149

OS see MOS

OSARGS ... 154

OSBGET ... 28,147,154

OSBPUT ... 147,154

OSBYTE 8,20,21,45,135,163

OSBYTE Calls
-&00 ...47,71
-&04 ... 47
-&09...74
-&0A .74
- &0F ... 74
-&10..67,74
-&11..74
-&12..74
-&14 ... 48,66
-&14 ... 66
-&15..74
- &16 ... 49,65
- &17 ...50,65

Index

265

Master Operating System : A Dabhand Guide

266

-&18 ..
-&19..
-&32...
-&33..
-&34 ..
-&35...
-&44 ...
- &45 ...
- &60 ...
- &6B ...
- &6D ..
-&70 ...
-&71..
-&72..
-&73 ...
-&74 ...
-&75...
-&77 ...
-&78 ..
- &80 ...
-&81 ..
-&83 ...
-&84 ..
- &86..
- &87 ..
-&88 ...
- &89 ...
-&8B ...
-&8C...
- &8F ..

55

. 158
55,56,72,99
55,56,72,99
56,71

57

50

57

74,150

74

58,74
47,58,71
123

60,123

.61,64,126
.61

16

61

25,149
24,30,62,158

.21,62

Index

-&EB...70
-&EE...70

- &EF ... 61,71
-&F0..71

- &F6 ... 66
-&FA .72
-&FB...72
-&FE...72
-&FF ...73

OSCLI ... 11,112,149

OSEVEN ... 140

OSFILE ... 17,28,99,148,154

OSFIND ... 15,16,27,28,147,154

OSFSC ... 19,149

OSGBPB ... 147,153

OSHWM ... 15,16,28,49,59,65,80,117,122,140

OSRDCH ... 69

OSRDRM ... 140

OSRDSC ... 140

OSVARS ... 45

OSVDU ... 140

OSWORD 8,75,114,134,135

OSWORD Calls
- &05 ... 76,99,147
- &06 ... 99,147
- &0E ... 30,76
-&10..78
-&11..78
-&12...78
-&13..78
-&14...30,79
-&40..79
-&41..79
-&42..79
-&43 ... 80
- &5F ... 81
- &60 ... 81
-&62...8284
-&63..83
-&72.84

267

Master Operating System : A Dabhand Guide

-&73 ...
-&7A ...
-&7B...
-&7D ...
-&7E ...
- &7F ... 86,150 -
- &80 ...88

- &FE ...88

BB

OSWRSC ... 140

PAGE ... 15,140

palette ... 57

PANOS ... 132

parameters ... 12

PCB links AppG

PHX... 38,126

PHY ...39,126

piracy ... 92 =
PLX...39

PLY .. 40

PRINT ... 25,31

programming considerations ... 159
Programs Disc AppK

prohibited filename characters ... 150
pseudo address ... 28,29,54,79,94

PTR ... 147

Q parameter ... 28,29

R65c02 ... 33

R65c102 ... 33

RAM ... 21,26,28,35,98

reading data from the Tube ... 137

registers ... 137

releasing the Tube ... 135

reload address ... 27

REMOVE. ... 25

REMV ... 54,140

RENAME ... 25

reset ... 121

RFS ... 19,22,23,25,66,147,156
- data pointer ... 116
-read byte ... 116

RMB ... 33,4041,42

Rockwell ... 33

268

Index

ROM 8,13,22,25,30,49,85,92,95,105,121,141,
- copyright string ... 107
- header ... 105,106
-header ... 106,118
- polling ... 118
- service calls ... 108
- title ... 107
- type byte ... 107
- version number ... 107
ROMSEL ... 52,95,96,99
RUN ... 26,60,149,150

safe commands ... 32

SAVE ... 17,26,148

SBC ... 34,44

Second Processor 7,147

sector ... 23,32,87

Service Calls
-&01...110,118
-&02 ... 111
-&03...111
-&04 ... 112,157
-&05..113
-&06..113
-&07..114
-&08..114
-&09...115
-&0A ...115
-&0B...115
-&0C ... 115
-&0D ...116
-&0E ... 116
- &0F ... 117,157
-&10..117
- &11...117
-&12...157
-&15...49
-&21..118
-&22..119
- &23..119
-&24 ...119
- &25...120
-&26...121
-&27 ... 121
-&28..121
-&29..122

269

Master Operating System : A Dabhand Guide

-&2A ... 122
-&2B... 122
-&2C ... 122
-&41...30
-&FE ... 122
- &FF .. 122
service entry point ... 107
shadow 8,27,55,56,90,95
shadow RAM ... 90
SHOW ... 22,27
SHUT ... 16,27,121
Sideways RAM 8,26,28,29,31,52,53,54,79,80,90,91,93,94,105,133,141
Sideways ROM ... 105,113
SMB ... 33,4041 42
sound ... 57
splitter ... 32
SPOOL ... 27,74,117,150
SPOOLON ... 27,28,74
SRAM see Sideways RAM
SRDATA ... 28,29,80
SRLOAD ... 28,80,93
SRREAD ... 29
SRROM ... 29,80
SRSAVE ... 29,80
SRWRITE ... 29,93,95
STA ...56
star commands ... 112, see also command name, ie, CAT
static workspace ... 115,118
STATUS ... 30,122,161
STY ... 41
STZ ... 41
summary of Tube registers ... 141

TAPE ... 30,62,66

Teletext ... 17,30,85,91,120

temporary filing systems ... 55,151
temporary ﬁhng systems deselecting ...
Terminal ...

Third Party .. 64 79

TIME ... 30,76

title ... 30

top of static workspace ... 119

track ... 20,32,87

transferring control to the co-processor ... 138
transient command ... 152

TRB ... 41,42

270

Index

TSB ... 42
Tube ... 29,64,75,97,98,122,123,132
- claiming ... 135
- data transfer ... 134
- ESCAPE flag ... 134
- Host Code ... 132,133
- program notes ... 140
- protocols ... 143
- read data ... 137
- releasing ... 135
- write data ... 137
Turbo ... 33
TV ... 31,62,90
TYPE ... 23,2531
type styles 9
unchanged calls ... 74
UNIX ... 132

UNPLUG ... 22,31,93

unsafe commands ... 32

UPTV ... 140

USA machine ... 71

USERYV ... 16,23,75,114,135,140

using - Sideways RAM for data storage ... 94
- Sideways RAM for ROMS ... 92

VDU 8,25 27,30,31 56,57, App C

VDUV ..
vector ... 124

- extended ... 124
VERIFY ... 13,32

VFS see Videodisc
Videodisc ... 79,81,82,136

VIEW ... 10

WIPE ... 13

workspace ... 28,29,93
- frugalising ... 93
- dynamic ... 119

- dynamic requirements ... 119
- static ... 115,118
- top of static ... 119

write protect ... 93

writing your own ROMS ... %4

X.32

271

Master Operating System : A Dabhand Guide

780 ...80,133 —

65C02...33

- new addressing modes ... 43

- new instructions ... 36 =~
65C12 see 65C02

272

e . Dabhand Guide s

This book is the definitive reference work for programmers of
the BBC Model B+, Master 128 and Master Compact comput-
ers. It also containg much material of interest 1o BBC Model B
and Electron users. The book covears oll features of the Acorn
machine operating system (MOS) including:

® All ‘'stor’ commaonds on all models

& 465C12 epcodes (including Rockwell additions)

® All new 55 BYTE/OQOSWORD and other system calls
& Sideways and Shadow RAM programming

& ROM service calls {complete) and header code

& Driving the Tube in both directions

Also included iz @ complete list of differances belween the
various Acorn computers, and in one convenient place, all
thosa vito! laobles thot you need when programming your BBC
computer. The Shadow ond Sideways RAM and Tube chapters
are expanded lo provide application ideas, and the book |s
liberally sprinkled with program listings.

David Atherton waos manoger of BBC Soft for three yeors and
is a regular contributor 1o Acorn User mogazine and is widely
respected os an authority on the BBC Micro.

‘Seripus users shouldn’t be without therr copy of this invaluable
boak” David Samers, A&B Computing November 1987

£12:95

1584 1-B703348=-01=1

L

